选择偏差诊断的模拟研究。

IF 0.5 4区 数学 Q4 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Official Statistics Pub Date : 2021-09-01 Epub Date: 2021-09-12 DOI:10.2478/jos-2021-0033
Philip S Boonstra, Roderick J A Little, Brady T West, Rebecca R Andridge, Fernanda Alvarado-Leiton
{"title":"选择偏差诊断的模拟研究。","authors":"Philip S Boonstra,&nbsp;Roderick J A Little,&nbsp;Brady T West,&nbsp;Rebecca R Andridge,&nbsp;Fernanda Alvarado-Leiton","doi":"10.2478/jos-2021-0033","DOIUrl":null,"url":null,"abstract":"<p><p>A non-probability sampling mechanism arising from non-response or non-selection is likely to bias estimates of parameters with respect to a target population of interest. This bias poses a unique challenge when selection is 'non-ignorable', i.e. dependent upon the unobserved outcome of interest, since it is then undetectable and thus cannot be ameliorated. We extend a simulation study by Nishimura et al. [<i>International Statistical Review</i>, 84, 43-62 (2016)], adding two recently published statistics: the so-called 'standardized measure of unadjusted bias (SMUB)' and 'standardized measure of adjusted bias (SMAB)', which explicitly quantify the extent of bias (in the case of SMUB) or non-ignorable bias (in the case of SMAB) under the assumption that a specified amount of non-ignorable selection exists. Our findings suggest that this new sensitivity diagnostic is more correlated with, and more predictive of, the true, unknown extent of selection bias than other diagnostics, even when the underlying assumed level of non-ignorability is incorrect.</p>","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"37 3","pages":"751-769"},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460089/pdf/nihms-1654085.pdf","citationCount":"4","resultStr":"{\"title\":\"A simulation study of diagnostics for selection bias.\",\"authors\":\"Philip S Boonstra,&nbsp;Roderick J A Little,&nbsp;Brady T West,&nbsp;Rebecca R Andridge,&nbsp;Fernanda Alvarado-Leiton\",\"doi\":\"10.2478/jos-2021-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A non-probability sampling mechanism arising from non-response or non-selection is likely to bias estimates of parameters with respect to a target population of interest. This bias poses a unique challenge when selection is 'non-ignorable', i.e. dependent upon the unobserved outcome of interest, since it is then undetectable and thus cannot be ameliorated. We extend a simulation study by Nishimura et al. [<i>International Statistical Review</i>, 84, 43-62 (2016)], adding two recently published statistics: the so-called 'standardized measure of unadjusted bias (SMUB)' and 'standardized measure of adjusted bias (SMAB)', which explicitly quantify the extent of bias (in the case of SMUB) or non-ignorable bias (in the case of SMAB) under the assumption that a specified amount of non-ignorable selection exists. Our findings suggest that this new sensitivity diagnostic is more correlated with, and more predictive of, the true, unknown extent of selection bias than other diagnostics, even when the underlying assumed level of non-ignorability is incorrect.</p>\",\"PeriodicalId\":51092,\"journal\":{\"name\":\"Journal of Official Statistics\",\"volume\":\"37 3\",\"pages\":\"751-769\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460089/pdf/nihms-1654085.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Official Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/jos-2021-0033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2021-0033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 4

摘要

由非响应或非选择引起的非概率抽样机制很可能会对有关感兴趣的目标群体的参数估计产生偏差。当选择是“不可忽视的”,即依赖于未观察到的兴趣结果时,这种偏差构成了一个独特的挑战,因为它是不可检测的,因此无法改善。我们扩展了Nishimura等人的模拟研究[国际统计评论,84,43-62(2016)],增加了两个最近发表的统计数据:所谓的“未调整偏差的标准化测量(SMUB)”和“调整偏差的标准化测量(SMAB)”,它们明确量化了偏差的程度(在SMUB的情况下)或不可忽略的偏差(在SMAB的情况下)假设存在一定数量的不可忽略的选择。我们的研究结果表明,与其他诊断方法相比,这种新的敏感性诊断方法与真实的、未知的选择偏差程度更相关,也更能预测,即使假设的不可忽略性水平是不正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simulation study of diagnostics for selection bias.

A non-probability sampling mechanism arising from non-response or non-selection is likely to bias estimates of parameters with respect to a target population of interest. This bias poses a unique challenge when selection is 'non-ignorable', i.e. dependent upon the unobserved outcome of interest, since it is then undetectable and thus cannot be ameliorated. We extend a simulation study by Nishimura et al. [International Statistical Review, 84, 43-62 (2016)], adding two recently published statistics: the so-called 'standardized measure of unadjusted bias (SMUB)' and 'standardized measure of adjusted bias (SMAB)', which explicitly quantify the extent of bias (in the case of SMUB) or non-ignorable bias (in the case of SMAB) under the assumption that a specified amount of non-ignorable selection exists. Our findings suggest that this new sensitivity diagnostic is more correlated with, and more predictive of, the true, unknown extent of selection bias than other diagnostics, even when the underlying assumed level of non-ignorability is incorrect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Official Statistics
Journal of Official Statistics STATISTICS & PROBABILITY-
CiteScore
1.90
自引率
9.10%
发文量
39
审稿时长
>12 weeks
期刊介绍: JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.
期刊最新文献
Reliable event rates for disease mapping. Application of Sampling Variance Smoothing Methods for Small Area Proportion Estimation Answering Current Challenges of and Changes in Producing Official Time Use Statistics Using the Data Collection Platform MOTUS Small Area with Multiply Imputed Survey Data Temporally Consistent Present Population from Mobile Network Signaling Data for Official Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1