{"title":"澳大利亚西北陆架平背龟胚胎的代谢率和热阈值。","authors":"Malindi Gammon, Blair Bentley, Sabrina Fossette, Nicola Mitchell","doi":"10.1086/716848","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractNest microclimates influence embryonic development and survival in many lineages, including reptiles with temperature-dependent sex determination. These microclimates are dependent on physical drivers and biological processes, such as embryonic metabolism, that generate heat. The flatback turtle (<i>Natator depressus</i>) has among the largest hatchlings of the seven extant sea turtle species, making it an excellent candidate for quantifying the contribution of embryonic metabolism to the nest microclimate. Consequently, we measured embryonic metabolic rates, development rates, and the relationship between temperature and sex determination for a <i>N. depressus</i> population nesting at Cemetery Beach in Western Australia, a mainland beach characterized by high sand temperatures. Total oxygen consumed at 29.5°C during an average 52-d incubation period was 2,622 mL, total carbon dioxide produced was 1,886 mL, and estimated embryonic heat production reached 38 mW at 90% of development. Adjustment of metabolic rates to 32°C and 34°C increased peak heat production by 18% and 27%, respectively. The pivotal temperature (<i>T</i><sub>PIV</sub>) producing an equal sex ratio was 30.3°C, mixed sexes were produced between 29.3°C and 31.2°C, and only females were produced above 31.2°C. The <i>T</i><sub>PIV</sub> was similar (within 0.2°C) to that of an island rookery within the same genetic stock (North West Shelf), but the peak development rate (2.5% d<sup>-1</sup>) was estimated to be achieved at a temperature ~2.5°C higher (34.7°C) than the island rookery. Our results add to a growing consensus that thermal thresholds vary among sea turtle populations, even within the same genetic stock. Furthermore, we show that metabolic heat will have an appreciable impact on the nest microclimate, which has implications for embryonic survival and fitness under a future climate with warmer sand temperatures.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"94 6","pages":"429-442"},"PeriodicalIF":1.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Metabolic Rates and Thermal Thresholds of Embryonic Flatback Turtles (<i>Natator depressus</i>) from the North West Shelf of Australia.\",\"authors\":\"Malindi Gammon, Blair Bentley, Sabrina Fossette, Nicola Mitchell\",\"doi\":\"10.1086/716848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractNest microclimates influence embryonic development and survival in many lineages, including reptiles with temperature-dependent sex determination. These microclimates are dependent on physical drivers and biological processes, such as embryonic metabolism, that generate heat. The flatback turtle (<i>Natator depressus</i>) has among the largest hatchlings of the seven extant sea turtle species, making it an excellent candidate for quantifying the contribution of embryonic metabolism to the nest microclimate. Consequently, we measured embryonic metabolic rates, development rates, and the relationship between temperature and sex determination for a <i>N. depressus</i> population nesting at Cemetery Beach in Western Australia, a mainland beach characterized by high sand temperatures. Total oxygen consumed at 29.5°C during an average 52-d incubation period was 2,622 mL, total carbon dioxide produced was 1,886 mL, and estimated embryonic heat production reached 38 mW at 90% of development. Adjustment of metabolic rates to 32°C and 34°C increased peak heat production by 18% and 27%, respectively. The pivotal temperature (<i>T</i><sub>PIV</sub>) producing an equal sex ratio was 30.3°C, mixed sexes were produced between 29.3°C and 31.2°C, and only females were produced above 31.2°C. The <i>T</i><sub>PIV</sub> was similar (within 0.2°C) to that of an island rookery within the same genetic stock (North West Shelf), but the peak development rate (2.5% d<sup>-1</sup>) was estimated to be achieved at a temperature ~2.5°C higher (34.7°C) than the island rookery. Our results add to a growing consensus that thermal thresholds vary among sea turtle populations, even within the same genetic stock. Furthermore, we show that metabolic heat will have an appreciable impact on the nest microclimate, which has implications for embryonic survival and fitness under a future climate with warmer sand temperatures.</p>\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\"94 6\",\"pages\":\"429-442\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/716848\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/716848","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Metabolic Rates and Thermal Thresholds of Embryonic Flatback Turtles (Natator depressus) from the North West Shelf of Australia.
AbstractNest microclimates influence embryonic development and survival in many lineages, including reptiles with temperature-dependent sex determination. These microclimates are dependent on physical drivers and biological processes, such as embryonic metabolism, that generate heat. The flatback turtle (Natator depressus) has among the largest hatchlings of the seven extant sea turtle species, making it an excellent candidate for quantifying the contribution of embryonic metabolism to the nest microclimate. Consequently, we measured embryonic metabolic rates, development rates, and the relationship between temperature and sex determination for a N. depressus population nesting at Cemetery Beach in Western Australia, a mainland beach characterized by high sand temperatures. Total oxygen consumed at 29.5°C during an average 52-d incubation period was 2,622 mL, total carbon dioxide produced was 1,886 mL, and estimated embryonic heat production reached 38 mW at 90% of development. Adjustment of metabolic rates to 32°C and 34°C increased peak heat production by 18% and 27%, respectively. The pivotal temperature (TPIV) producing an equal sex ratio was 30.3°C, mixed sexes were produced between 29.3°C and 31.2°C, and only females were produced above 31.2°C. The TPIV was similar (within 0.2°C) to that of an island rookery within the same genetic stock (North West Shelf), but the peak development rate (2.5% d-1) was estimated to be achieved at a temperature ~2.5°C higher (34.7°C) than the island rookery. Our results add to a growing consensus that thermal thresholds vary among sea turtle populations, even within the same genetic stock. Furthermore, we show that metabolic heat will have an appreciable impact on the nest microclimate, which has implications for embryonic survival and fitness under a future climate with warmer sand temperatures.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.