Allan Fong, Nicholas Scoulios, H Joseph Blumenthal, Ryan E Anderson
{"title":"使用机器学习从自然语言中获取质量指标:糖尿病眼科检查的案例研究。","authors":"Allan Fong, Nicholas Scoulios, H Joseph Blumenthal, Ryan E Anderson","doi":"10.1055/s-0041-1736311","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>The prevalence of value-based payment models has led to an increased use of the electronic health record to capture quality measures, necessitating additional documentation requirements for providers.</p><p><strong>Methods: </strong>This case study uses text mining and natural language processing techniques to identify the timely completion of diabetic eye exams (DEEs) from 26,203 unique clinician notes for reporting as an electronic clinical quality measure (eCQM). Logistic regression and support vector machine (SVM) using unbalanced and balanced datasets, using the synthetic minority over-sampling technique (SMOTE) algorithm, were evaluated on precision, recall, sensitivity, and f1-score for classifying records positive for DEE. We then integrate a high precision DEE model to evaluate free-text clinical narratives from our clinical EHR system.</p><p><strong>Results: </strong>Logistic regression and SVM models had comparable f1-score and specificity metrics with models trained and validated with no oversampling favoring precision over recall. SVM with and without oversampling resulted in the best precision, 0.96, and recall, 0.85, respectively. These two SVM models were applied to the unannotated 31,585 text segments representing 24,823 unique records and 13,714 unique patients. The number of records classified as positive for DEE using the SVM models ranged from 667 to 8,935 (2.7-36% out of 24,823, respectively). Unique patients classified as positive for DEE ranged from 3.5 to 41.8% highlighting the potential utility of these models.</p><p><strong>Discussion: </strong>We believe the impact of oversampling on SVM model performance to be caused by the potential of overfitting of the SVM SMOTE model on the synthesized data and the data synthesis process. However, the specificities of SVM with and without SMOTE were comparable, suggesting both models were confident in their negative predictions. By prioritizing to implement the SVM model with higher precision over sensitivity or recall in the categorization of DEEs, we can provide a highly reliable pool of results that can be documented through automation, reducing the burden of secondary review. Although the focus of this work was on completed DEEs, this method could be applied to completing other necessary documentation by extracting information from natural language in clinician notes.</p><p><strong>Conclusion: </strong>By enabling the capture of data for eCQMs from documentation generated by usual clinical practice, this work represents a case study in how such techniques can be leveraged to drive quality without increasing clinician work.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":"60 3-04","pages":"110-115"},"PeriodicalIF":1.3000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning to Capture Quality Metrics from Natural Language: A Case Study of Diabetic Eye Exams.\",\"authors\":\"Allan Fong, Nicholas Scoulios, H Joseph Blumenthal, Ryan E Anderson\",\"doi\":\"10.1055/s-0041-1736311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>The prevalence of value-based payment models has led to an increased use of the electronic health record to capture quality measures, necessitating additional documentation requirements for providers.</p><p><strong>Methods: </strong>This case study uses text mining and natural language processing techniques to identify the timely completion of diabetic eye exams (DEEs) from 26,203 unique clinician notes for reporting as an electronic clinical quality measure (eCQM). Logistic regression and support vector machine (SVM) using unbalanced and balanced datasets, using the synthetic minority over-sampling technique (SMOTE) algorithm, were evaluated on precision, recall, sensitivity, and f1-score for classifying records positive for DEE. We then integrate a high precision DEE model to evaluate free-text clinical narratives from our clinical EHR system.</p><p><strong>Results: </strong>Logistic regression and SVM models had comparable f1-score and specificity metrics with models trained and validated with no oversampling favoring precision over recall. SVM with and without oversampling resulted in the best precision, 0.96, and recall, 0.85, respectively. These two SVM models were applied to the unannotated 31,585 text segments representing 24,823 unique records and 13,714 unique patients. The number of records classified as positive for DEE using the SVM models ranged from 667 to 8,935 (2.7-36% out of 24,823, respectively). Unique patients classified as positive for DEE ranged from 3.5 to 41.8% highlighting the potential utility of these models.</p><p><strong>Discussion: </strong>We believe the impact of oversampling on SVM model performance to be caused by the potential of overfitting of the SVM SMOTE model on the synthesized data and the data synthesis process. However, the specificities of SVM with and without SMOTE were comparable, suggesting both models were confident in their negative predictions. By prioritizing to implement the SVM model with higher precision over sensitivity or recall in the categorization of DEEs, we can provide a highly reliable pool of results that can be documented through automation, reducing the burden of secondary review. Although the focus of this work was on completed DEEs, this method could be applied to completing other necessary documentation by extracting information from natural language in clinician notes.</p><p><strong>Conclusion: </strong>By enabling the capture of data for eCQMs from documentation generated by usual clinical practice, this work represents a case study in how such techniques can be leveraged to drive quality without increasing clinician work.</p>\",\"PeriodicalId\":49822,\"journal\":{\"name\":\"Methods of Information in Medicine\",\"volume\":\"60 3-04\",\"pages\":\"110-115\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Information in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0041-1736311\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/s-0041-1736311","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Using Machine Learning to Capture Quality Metrics from Natural Language: A Case Study of Diabetic Eye Exams.
Background and objective: The prevalence of value-based payment models has led to an increased use of the electronic health record to capture quality measures, necessitating additional documentation requirements for providers.
Methods: This case study uses text mining and natural language processing techniques to identify the timely completion of diabetic eye exams (DEEs) from 26,203 unique clinician notes for reporting as an electronic clinical quality measure (eCQM). Logistic regression and support vector machine (SVM) using unbalanced and balanced datasets, using the synthetic minority over-sampling technique (SMOTE) algorithm, were evaluated on precision, recall, sensitivity, and f1-score for classifying records positive for DEE. We then integrate a high precision DEE model to evaluate free-text clinical narratives from our clinical EHR system.
Results: Logistic regression and SVM models had comparable f1-score and specificity metrics with models trained and validated with no oversampling favoring precision over recall. SVM with and without oversampling resulted in the best precision, 0.96, and recall, 0.85, respectively. These two SVM models were applied to the unannotated 31,585 text segments representing 24,823 unique records and 13,714 unique patients. The number of records classified as positive for DEE using the SVM models ranged from 667 to 8,935 (2.7-36% out of 24,823, respectively). Unique patients classified as positive for DEE ranged from 3.5 to 41.8% highlighting the potential utility of these models.
Discussion: We believe the impact of oversampling on SVM model performance to be caused by the potential of overfitting of the SVM SMOTE model on the synthesized data and the data synthesis process. However, the specificities of SVM with and without SMOTE were comparable, suggesting both models were confident in their negative predictions. By prioritizing to implement the SVM model with higher precision over sensitivity or recall in the categorization of DEEs, we can provide a highly reliable pool of results that can be documented through automation, reducing the burden of secondary review. Although the focus of this work was on completed DEEs, this method could be applied to completing other necessary documentation by extracting information from natural language in clinician notes.
Conclusion: By enabling the capture of data for eCQMs from documentation generated by usual clinical practice, this work represents a case study in how such techniques can be leveraged to drive quality without increasing clinician work.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.