Jing An, Yumeng Zhang, Alexander D. Fudge, Haixia Lu, William D. Richardson, Huiliang Li
{"title":"G蛋白偶联受体gpr37样1调控成体少突胶质细胞的生成","authors":"Jing An, Yumeng Zhang, Alexander D. Fudge, Haixia Lu, William D. Richardson, Huiliang Li","doi":"10.1002/dneu.22854","DOIUrl":null,"url":null,"abstract":"Oligodendrocytes (OLs) continue to be generated from OL precursors (OPs) in the adult mammalian brain. Adult‐born OLs are believed to contribute to neural plasticity, learning and memory through a process of “adaptive myelination,” but how adult OL generation and adaptive myelination are regulated remains unclear. Here, we report that the glia‐specific G protein‐coupled receptor 37‐like 1 (GPR37L1) is expressed in subsets of OPs and newly formed immature OLs in adult mouse brain. We found that OP proliferation and differentiation are inhibited in the corpus callosum of adult Gpr37l1 knockout mice, leading to a reduction in the number of adult‐born OLs. Our data raise the possibility that GPR37L1 is mechanistically involved in adult OL generation and adaptive myelination, and suggest that GPR37L1 might be a useful functional marker of OPs that are committed to OL differentiation.","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"81 8","pages":"975-984"},"PeriodicalIF":2.7000,"publicationDate":"2021-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22854","citationCount":"3","resultStr":"{\"title\":\"G protein-coupled receptor GPR37-like 1 regulates adult oligodendrocyte generation\",\"authors\":\"Jing An, Yumeng Zhang, Alexander D. Fudge, Haixia Lu, William D. Richardson, Huiliang Li\",\"doi\":\"10.1002/dneu.22854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oligodendrocytes (OLs) continue to be generated from OL precursors (OPs) in the adult mammalian brain. Adult‐born OLs are believed to contribute to neural plasticity, learning and memory through a process of “adaptive myelination,” but how adult OL generation and adaptive myelination are regulated remains unclear. Here, we report that the glia‐specific G protein‐coupled receptor 37‐like 1 (GPR37L1) is expressed in subsets of OPs and newly formed immature OLs in adult mouse brain. We found that OP proliferation and differentiation are inhibited in the corpus callosum of adult Gpr37l1 knockout mice, leading to a reduction in the number of adult‐born OLs. Our data raise the possibility that GPR37L1 is mechanistically involved in adult OL generation and adaptive myelination, and suggest that GPR37L1 might be a useful functional marker of OPs that are committed to OL differentiation.\",\"PeriodicalId\":11300,\"journal\":{\"name\":\"Developmental Neurobiology\",\"volume\":\"81 8\",\"pages\":\"975-984\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22854\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22854\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22854","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
G protein-coupled receptor GPR37-like 1 regulates adult oligodendrocyte generation
Oligodendrocytes (OLs) continue to be generated from OL precursors (OPs) in the adult mammalian brain. Adult‐born OLs are believed to contribute to neural plasticity, learning and memory through a process of “adaptive myelination,” but how adult OL generation and adaptive myelination are regulated remains unclear. Here, we report that the glia‐specific G protein‐coupled receptor 37‐like 1 (GPR37L1) is expressed in subsets of OPs and newly formed immature OLs in adult mouse brain. We found that OP proliferation and differentiation are inhibited in the corpus callosum of adult Gpr37l1 knockout mice, leading to a reduction in the number of adult‐born OLs. Our data raise the possibility that GPR37L1 is mechanistically involved in adult OL generation and adaptive myelination, and suggest that GPR37L1 might be a useful functional marker of OPs that are committed to OL differentiation.
期刊介绍:
Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.