用于小鼠纵隔器官三维血管成像的简单光学组织清除管道

IF 1.8 4区 医学 Q3 PATHOLOGY International Journal of Experimental Pathology Pub Date : 2021-10-06 DOI:10.1111/iep.12399
Quanchao Sun, Picascia Tiziana, Arif ul Maula Khan, Vincent Heuveline, Norbert Gretz
{"title":"用于小鼠纵隔器官三维血管成像的简单光学组织清除管道","authors":"Quanchao Sun,&nbsp;Picascia Tiziana,&nbsp;Arif ul Maula Khan,&nbsp;Vincent Heuveline,&nbsp;Norbert Gretz","doi":"10.1111/iep.12399","DOIUrl":null,"url":null,"abstract":"<p>Optical tissue clearing (OTC) methods render tissue transparent by matching the refractive index within a sample to enable three-dimensional (3D) imaging with advanced microscopes. The application of OTC method in mediastinal organs in mice remains poorly understand. Our aim was to establish a simple protocol pipeline for 3D imaging of the mediastinal organs in mice. Trachea, oesophagus, thymus and heart were harvested from mice after retrograde perfusion via the abdominal aorta. We combined and optimized antibody labelling of thick tissue samples, OTC with cheap and non-toxic solvent ethyl cinnamate (ECi), and light-sheet fluorescence microscopy (LSFM) or laser confocal fluorescence microscopy (LCFM) to visualize the vasculature of those tissues. A high degree of optical transparency of trachea, oesophagus, thymus and heart was achieved after ECi-based OTC. With anti-CD31 antibody immunofluorescence labelling before ECi-based OTC, the vasculature of these tissues with their natural morphology, location and organizational network was imaged using LSFM or LCFM. This simple protocol pipeline provides an easy-to-setup and comprehensive way to study the vasculature of mediastinal organs in 3D without any special equipment. We anticipate that it will facilitate diverse applications in biomedical research of thoracic diseases and even other organs.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A simple optical tissue clearing pipeline for 3D vasculature imaging of the mediastinal organs in mice\",\"authors\":\"Quanchao Sun,&nbsp;Picascia Tiziana,&nbsp;Arif ul Maula Khan,&nbsp;Vincent Heuveline,&nbsp;Norbert Gretz\",\"doi\":\"10.1111/iep.12399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical tissue clearing (OTC) methods render tissue transparent by matching the refractive index within a sample to enable three-dimensional (3D) imaging with advanced microscopes. The application of OTC method in mediastinal organs in mice remains poorly understand. Our aim was to establish a simple protocol pipeline for 3D imaging of the mediastinal organs in mice. Trachea, oesophagus, thymus and heart were harvested from mice after retrograde perfusion via the abdominal aorta. We combined and optimized antibody labelling of thick tissue samples, OTC with cheap and non-toxic solvent ethyl cinnamate (ECi), and light-sheet fluorescence microscopy (LSFM) or laser confocal fluorescence microscopy (LCFM) to visualize the vasculature of those tissues. A high degree of optical transparency of trachea, oesophagus, thymus and heart was achieved after ECi-based OTC. With anti-CD31 antibody immunofluorescence labelling before ECi-based OTC, the vasculature of these tissues with their natural morphology, location and organizational network was imaged using LSFM or LCFM. This simple protocol pipeline provides an easy-to-setup and comprehensive way to study the vasculature of mediastinal organs in 3D without any special equipment. We anticipate that it will facilitate diverse applications in biomedical research of thoracic diseases and even other organs.</p>\",\"PeriodicalId\":14157,\"journal\":{\"name\":\"International Journal of Experimental Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Experimental Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iep.12399\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Experimental Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iep.12399","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

光学组织清除(OTC)方法通过匹配样品内的折射率使组织透明,从而使用先进的显微镜进行三维(3D)成像。OTC法在小鼠纵隔器官中的应用尚不清楚。我们的目的是为小鼠纵隔器官的三维成像建立一个简单的协议管道。经腹主动脉逆行灌注后取小鼠气管、食管、胸腺和心脏。我们结合并优化了厚组织样品的抗体标记,廉价无毒溶剂肉桂酸乙酯(ECi)的OTC,以及光片荧光显微镜(LSFM)或激光共聚焦荧光显微镜(LCFM)来观察这些组织的血管系统。气管、食道、胸腺和心脏在eci基础OTC后获得了高度的光学透明度。在基于eci的OTC之前进行抗cd31抗体免疫荧光标记,使用LSFM或LCFM对这些组织的血管及其自然形态、位置和组织网络进行成像。这种简单的协议管道提供了一种易于设置和全面的方法来研究纵隔器官的血管系统在3D中没有任何特殊的设备。我们预计它将促进在胸部疾病甚至其他器官的生物医学研究中的多种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple optical tissue clearing pipeline for 3D vasculature imaging of the mediastinal organs in mice

Optical tissue clearing (OTC) methods render tissue transparent by matching the refractive index within a sample to enable three-dimensional (3D) imaging with advanced microscopes. The application of OTC method in mediastinal organs in mice remains poorly understand. Our aim was to establish a simple protocol pipeline for 3D imaging of the mediastinal organs in mice. Trachea, oesophagus, thymus and heart were harvested from mice after retrograde perfusion via the abdominal aorta. We combined and optimized antibody labelling of thick tissue samples, OTC with cheap and non-toxic solvent ethyl cinnamate (ECi), and light-sheet fluorescence microscopy (LSFM) or laser confocal fluorescence microscopy (LCFM) to visualize the vasculature of those tissues. A high degree of optical transparency of trachea, oesophagus, thymus and heart was achieved after ECi-based OTC. With anti-CD31 antibody immunofluorescence labelling before ECi-based OTC, the vasculature of these tissues with their natural morphology, location and organizational network was imaged using LSFM or LCFM. This simple protocol pipeline provides an easy-to-setup and comprehensive way to study the vasculature of mediastinal organs in 3D without any special equipment. We anticipate that it will facilitate diverse applications in biomedical research of thoracic diseases and even other organs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
3.30%
发文量
35
审稿时长
>12 weeks
期刊介绍: Experimental Pathology encompasses the use of multidisciplinary scientific techniques to investigate the pathogenesis and progression of pathologic processes. The International Journal of Experimental Pathology - IJEP - publishes papers which afford new and imaginative insights into the basic mechanisms underlying human disease, including in vitro work, animal models, and clinical research. Aiming to report on work that addresses the common theme of mechanism at a cellular and molecular level, IJEP publishes both original experimental investigations and review articles. Recent themes for review series have covered topics as diverse as "Viruses and Cancer", "Granulomatous Diseases", "Stem cells" and "Cardiovascular Pathology".
期刊最新文献
Issue Information Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix Renal protective roles of macrophage matrix metalloproteinase-12 in mice with obstructed kidneys Feline hypertrophic cardiomyopathy: Does the microRNA-mRNA regulatory network contribute to heart sarcomeric protein remodelling? Zinc transporter ZnT5 is associated with epithelial mesenchymal transition via SMAD1 in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1