重要生物柴油植物大戟的高质量基因组组装。

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY DNA Research Pub Date : 2021-10-11 DOI:10.1093/dnares/dsab022
Mingcheng Wang, Zhijia Gu, Zhixi Fu, Dechun Jiang
{"title":"重要生物柴油植物大戟的高质量基因组组装。","authors":"Mingcheng Wang,&nbsp;Zhijia Gu,&nbsp;Zhixi Fu,&nbsp;Dechun Jiang","doi":"10.1093/dnares/dsab022","DOIUrl":null,"url":null,"abstract":"<p><p>Caper spurge, Euphorbia lathyris L., is an important energy crop and medicinal crop. Here, we generated a high-quality, chromosome-level genome assembly of caper spurge using Oxford Nanopore sequencing, Illumina sequencing, and Hi-C technology. The final genome assembly was ∼988.9 Mb in size, 99.8% of which could be grouped into 10 pseudochromosomes, with contig and scaffold N50 values of 32.6 and 95.7 Mb, respectively. A total of 651.4 Mb repetitive sequences and 36,342 protein-coding genes were predicted in the genome assembly. Comparative genomic analysis showed that caper spurge and castor bean clustered together. We found that no independent whole-genome duplication event had occurred in caper spurge after its split from the castor bean, and recent substantial amplification of long terminal repeat retrotransposons has contributed significantly to its genome expansion. Furthermore, based on gene homology searching, we identified a number of candidate genes involved in the biosynthesis of fatty acids and triacylglycerols. The reference genome presented here will be highly useful for the further study of the genetics, genomics, and breeding of this high-value crop, as well as for evolutionary studies of spurge family and angiosperms.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":"28 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/7d/dsab022.PMC8545615.pdf","citationCount":"8","resultStr":"{\"title\":\"High-quality genome assembly of an important biodiesel plant, Euphorbia lathyris L.\",\"authors\":\"Mingcheng Wang,&nbsp;Zhijia Gu,&nbsp;Zhixi Fu,&nbsp;Dechun Jiang\",\"doi\":\"10.1093/dnares/dsab022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Caper spurge, Euphorbia lathyris L., is an important energy crop and medicinal crop. Here, we generated a high-quality, chromosome-level genome assembly of caper spurge using Oxford Nanopore sequencing, Illumina sequencing, and Hi-C technology. The final genome assembly was ∼988.9 Mb in size, 99.8% of which could be grouped into 10 pseudochromosomes, with contig and scaffold N50 values of 32.6 and 95.7 Mb, respectively. A total of 651.4 Mb repetitive sequences and 36,342 protein-coding genes were predicted in the genome assembly. Comparative genomic analysis showed that caper spurge and castor bean clustered together. We found that no independent whole-genome duplication event had occurred in caper spurge after its split from the castor bean, and recent substantial amplification of long terminal repeat retrotransposons has contributed significantly to its genome expansion. Furthermore, based on gene homology searching, we identified a number of candidate genes involved in the biosynthesis of fatty acids and triacylglycerols. The reference genome presented here will be highly useful for the further study of the genetics, genomics, and breeding of this high-value crop, as well as for evolutionary studies of spurge family and angiosperms.</p>\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\"28 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/7d/dsab022.PMC8545615.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsab022\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsab022","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 8

摘要

刺山柑(Euphorbia lathyris L.)是重要的能源作物和药用作物。在这里,我们使用Oxford Nanopore测序、Illumina测序和Hi-C技术生成了高质量的、染色体水平的刺山柑基因组组装。最终的基因组组装大小约为988.9 Mb,其中99.8%可分为10个假染色体,contig和scaffold N50值分别为32.6和95.7 Mb。在基因组组装中共预测651.4 Mb重复序列和36342个蛋白质编码基因。比较基因组分析表明,刺山柑和蓖麻聚在一起。我们发现,从蓖麻中分离出来的刺山柑没有发生独立的全基因组复制事件,最近长末端重复反转录转座子的大量扩增对其基因组扩增有重要贡献。此外,基于基因同源性搜索,我们确定了一些参与脂肪酸和三酰甘油生物合成的候选基因。本文所获得的参考基因组对进一步研究这一高价值作物的遗传学、基因组学和育种,以及油菜科和被子植物的进化研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-quality genome assembly of an important biodiesel plant, Euphorbia lathyris L.

Caper spurge, Euphorbia lathyris L., is an important energy crop and medicinal crop. Here, we generated a high-quality, chromosome-level genome assembly of caper spurge using Oxford Nanopore sequencing, Illumina sequencing, and Hi-C technology. The final genome assembly was ∼988.9 Mb in size, 99.8% of which could be grouped into 10 pseudochromosomes, with contig and scaffold N50 values of 32.6 and 95.7 Mb, respectively. A total of 651.4 Mb repetitive sequences and 36,342 protein-coding genes were predicted in the genome assembly. Comparative genomic analysis showed that caper spurge and castor bean clustered together. We found that no independent whole-genome duplication event had occurred in caper spurge after its split from the castor bean, and recent substantial amplification of long terminal repeat retrotransposons has contributed significantly to its genome expansion. Furthermore, based on gene homology searching, we identified a number of candidate genes involved in the biosynthesis of fatty acids and triacylglycerols. The reference genome presented here will be highly useful for the further study of the genetics, genomics, and breeding of this high-value crop, as well as for evolutionary studies of spurge family and angiosperms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Research
DNA Research 生物-遗传学
CiteScore
6.00
自引率
4.90%
发文量
39
审稿时长
4.5 months
期刊介绍: DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.
期刊最新文献
Chromosome-scale genome assembly of acerola (Malpighia emarginata DC.). The burst of satellite DNA in Leptidea wood white butterflies and their putative role in karyotype evolution. Time-dependent changes in genome-wide gene expression and post-transcriptional regulation across the post-death process in silkworm. A fully phased, chromosome-scale genome of sugar beet line FC309 enables the discovery of Fusarium yellows resistance QTL. Insights from the first chromosome-level genome assembly of the alpine gentian Gentiana straminea Maxim.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1