医疗保健调查中医疗编码的机器学习。

Christine A Lucas, Emily Hadley, Robert Chew, Jason Nance, Peter Baumgartner, Rita Thissen, David M Plotner, Christine Carr, Aerian Tatum
{"title":"医疗保健调查中医疗编码的机器学习。","authors":"Christine A Lucas,&nbsp;Emily Hadley,&nbsp;Robert Chew,&nbsp;Jason Nance,&nbsp;Peter Baumgartner,&nbsp;Rita Thissen,&nbsp;David M Plotner,&nbsp;Christine Carr,&nbsp;Aerian Tatum","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Objectives Medical coding, or the translation of healthcare information into numeric codes, is expensive and time intensive. This exploratory study evaluates the use of machine learning classifiers to perform automated medical coding for large statistical healthcare surveys.</p>","PeriodicalId":38828,"journal":{"name":"Vital and health statistics. Ser. 1: Programs and collection procedures","volume":" 189","pages":"1-29"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Medical Coding in Healthcare Surveys.\",\"authors\":\"Christine A Lucas,&nbsp;Emily Hadley,&nbsp;Robert Chew,&nbsp;Jason Nance,&nbsp;Peter Baumgartner,&nbsp;Rita Thissen,&nbsp;David M Plotner,&nbsp;Christine Carr,&nbsp;Aerian Tatum\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Objectives Medical coding, or the translation of healthcare information into numeric codes, is expensive and time intensive. This exploratory study evaluates the use of machine learning classifiers to perform automated medical coding for large statistical healthcare surveys.</p>\",\"PeriodicalId\":38828,\"journal\":{\"name\":\"Vital and health statistics. Ser. 1: Programs and collection procedures\",\"volume\":\" 189\",\"pages\":\"1-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vital and health statistics. Ser. 1: Programs and collection procedures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vital and health statistics. Ser. 1: Programs and collection procedures","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

医学编码,或将医疗保健信息转换为数字代码,既昂贵又耗时。本探索性研究评估了机器学习分类器在大型统计医疗调查中执行自动医疗编码的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning for Medical Coding in Healthcare Surveys.

Objectives Medical coding, or the translation of healthcare information into numeric codes, is expensive and time intensive. This exploratory study evaluates the use of machine learning classifiers to perform automated medical coding for large statistical healthcare surveys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
期刊介绍: Reports describing the general programs of the National Center for Health Statistics and its offices and divisions and the data collection methods used. Series 1 reports also include definitions and other material necessary for understanding the data.
期刊最新文献
Plan and Operations of the National Health and Nutrition Examination Survey, August 2021-August 2023. Assessing Laboratory Method Validations for Informing Inference Across Survey Cycles in the National Health and Nutrition Examination Survey. Developing Sampling Weights for Statistical Analysis of Parent-Child Pair Data From the National Health Interview Survey. Validation of the Enhanced Opioid Identification and Co-occurring Disorders Algorithms. National Center for Health Statistics' 2019 Research and Development Survey, RANDS 3.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1