iBlock:基于区块链的智能去中心化大流行病检测和辅助系统。

IF 1.6 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Signal Processing Systems for Signal Image and Video Technology Pub Date : 2022-01-01 Epub Date: 2021-10-14 DOI:10.1007/s11265-021-01704-9
Bhaskara S Egala, Ashok K Pradhan, Venkataramana Badarla, Saraju P Mohanty
{"title":"iBlock:基于区块链的智能去中心化大流行病检测和辅助系统。","authors":"Bhaskara S Egala, Ashok K Pradhan, Venkataramana Badarla, Saraju P Mohanty","doi":"10.1007/s11265-021-01704-9","DOIUrl":null,"url":null,"abstract":"<p><p>The recent COVID-19 outbreak highlighted the requirement for a more sophisticated healthcare system and real-time data analytics in the pandemic mitigation process. Moreover, real-time data plays a crucial role in the detection and alerting process. Combining smart healthcare systems with accurate real-time information about medical service availability, vaccination, and how the pandemic is spreading can directly affect the quality of life and economy. The existing architecture models are become inadequate in handling the pandemic mitigation process using real-time data. The present models are server-centric and controlled by a single party, where the management of confidentiality, integrity, and availability (CIA) of data is doubtful. Therefore, a decentralised user-centric model is necessary, where the CIA of user data is assured. In this paper, we have suggested a decentralized blockchain-based pandemic detection and assistance system (iBlock). The iBlock uses robust technologies like hybrid computing and IPFS to support system functionality. A pseudo-anonymous personal identity is introduced using H-PCS and cryptography for anonymous data sharing. The distributed data management module guarantees data CIA, security, and privacy using cryptography mechanisms. Furthermore, it delivers useful intelligent information in the form of suggestions and alerts to assist the users. Finally, the iBlock reduces stress on healthcare infrastructure and workers by providing accurate predictions and early warnings using AI/ML.</p>","PeriodicalId":50050,"journal":{"name":"Journal of Signal Processing Systems for Signal Image and Video Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515159/pdf/","citationCount":"0","resultStr":"{\"title\":\"iBlock: An Intelligent Decentralised Blockchain-based Pandemic Detection and Assisting System.\",\"authors\":\"Bhaskara S Egala, Ashok K Pradhan, Venkataramana Badarla, Saraju P Mohanty\",\"doi\":\"10.1007/s11265-021-01704-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recent COVID-19 outbreak highlighted the requirement for a more sophisticated healthcare system and real-time data analytics in the pandemic mitigation process. Moreover, real-time data plays a crucial role in the detection and alerting process. Combining smart healthcare systems with accurate real-time information about medical service availability, vaccination, and how the pandemic is spreading can directly affect the quality of life and economy. The existing architecture models are become inadequate in handling the pandemic mitigation process using real-time data. The present models are server-centric and controlled by a single party, where the management of confidentiality, integrity, and availability (CIA) of data is doubtful. Therefore, a decentralised user-centric model is necessary, where the CIA of user data is assured. In this paper, we have suggested a decentralized blockchain-based pandemic detection and assistance system (iBlock). The iBlock uses robust technologies like hybrid computing and IPFS to support system functionality. A pseudo-anonymous personal identity is introduced using H-PCS and cryptography for anonymous data sharing. The distributed data management module guarantees data CIA, security, and privacy using cryptography mechanisms. Furthermore, it delivers useful intelligent information in the form of suggestions and alerts to assist the users. Finally, the iBlock reduces stress on healthcare infrastructure and workers by providing accurate predictions and early warnings using AI/ML.</p>\",\"PeriodicalId\":50050,\"journal\":{\"name\":\"Journal of Signal Processing Systems for Signal Image and Video Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515159/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Signal Processing Systems for Signal Image and Video Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11265-021-01704-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Signal Processing Systems for Signal Image and Video Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11265-021-01704-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近爆发的 COVID-19 疫情凸显了在大流行病缓解过程中对更先进的医疗保健系统和实时数据分析的需求。此外,实时数据在检测和警报过程中起着至关重要的作用。将智能医疗系统与有关医疗服务可用性、疫苗接种以及大流行病传播方式的准确实时信息相结合,可直接影响生活和经济质量。现有的架构模型已不足以利用实时数据处理大流行病缓解过程。现有模型以服务器为中心,由单方控制,数据的保密性、完整性和可用性(CIA)管理令人怀疑。因此,有必要建立一个以用户为中心的分散模式,以确保用户数据的保密性、完整性和可用性。在本文中,我们提出了一种基于区块链的去中心化大流行病检测和援助系统(iBlock)。iBlock 使用混合计算和 IPFS 等强大技术来支持系统功能。使用 H-PCS 和密码学引入了一个伪匿名个人身份,用于匿名数据共享。分布式数据管理模块利用加密机制保证数据的 CIA、安全性和隐私性。此外,它还以建议和警报的形式提供有用的智能信息,为用户提供帮助。最后,iBlock 利用人工智能/ML 提供准确的预测和预警,减轻了医疗基础设施和工作人员的压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iBlock: An Intelligent Decentralised Blockchain-based Pandemic Detection and Assisting System.

The recent COVID-19 outbreak highlighted the requirement for a more sophisticated healthcare system and real-time data analytics in the pandemic mitigation process. Moreover, real-time data plays a crucial role in the detection and alerting process. Combining smart healthcare systems with accurate real-time information about medical service availability, vaccination, and how the pandemic is spreading can directly affect the quality of life and economy. The existing architecture models are become inadequate in handling the pandemic mitigation process using real-time data. The present models are server-centric and controlled by a single party, where the management of confidentiality, integrity, and availability (CIA) of data is doubtful. Therefore, a decentralised user-centric model is necessary, where the CIA of user data is assured. In this paper, we have suggested a decentralized blockchain-based pandemic detection and assistance system (iBlock). The iBlock uses robust technologies like hybrid computing and IPFS to support system functionality. A pseudo-anonymous personal identity is introduced using H-PCS and cryptography for anonymous data sharing. The distributed data management module guarantees data CIA, security, and privacy using cryptography mechanisms. Furthermore, it delivers useful intelligent information in the form of suggestions and alerts to assist the users. Finally, the iBlock reduces stress on healthcare infrastructure and workers by providing accurate predictions and early warnings using AI/ML.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
106
审稿时长
4-8 weeks
期刊介绍: The Journal of Signal Processing Systems for Signal, Image, and Video Technology publishes research papers on the design and implementation of signal processing systems, with or without VLSI circuits. The journal is published in twelve issues and is distributed to engineers, researchers, and educators in the general field of signal processing systems.
期刊最新文献
Prediction of Bus Passenger Traffic using Gaussian Process Regression. Signal Processing Techniques for 6G. LSTM Network Integrated with Particle Filter for Predicting the Bus Passenger Traffic. An Analysis of Image Features Extracted by CNNs to Design Classification Models for COVID-19 and Non-COVID-19. Fine-tuning-based Transfer Learning for Characterization of Adeno-Associated Virus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1