过量使用合成大麻素的潜在治疗方法。

Q1 Medicine Medical Cannabis and Cannabinoids Pub Date : 2020-03-23 eCollection Date: 2020-08-01 DOI:10.1159/000506635
Grant Meredith, Michael DeLollis, Mujeeb U Shad
{"title":"过量使用合成大麻素的潜在治疗方法。","authors":"Grant Meredith, Michael DeLollis, Mujeeb U Shad","doi":"10.1159/000506635","DOIUrl":null,"url":null,"abstract":"Emergency departments are increasingly reporting overdoses with synthetic cannabinoids (SCs), such as K2 and Spice, presenting not only as agitation, paranoia, anxiety, and confusion, but also medical complications, such as palpitations, hypertension, nausea, vomiting, and seizures [1]. Multiple deaths have also been reported with SC overdoses [2]. One of the reasons for such high level of toxicity with SCs is their potent agonist activity at cannabinoid type-1 (CB1) receptor without any action on the cannabinoid type-2 (CB2) receptor, which further adds to the adverse effect profile of SCs, as CB2 receptors have been shown to neutralize some of the CB1 receptor activation. However, in contrast to SCs, delta-9-tetrahydrocannabinol (THC; primary psychoactive substance in botanical marijuana) is a partial agonist at CB1 and CB2 receptors. We believe that it is the difference between partial and full agonism at CB1 receptors that makes the SCs so much more toxic than botanical marijuana or THC. In addition, SCs have longer half-lives along with active metabolites, whereas THC is primarily metabolized into the inactive metabolite 11-nor-9-carboxy-9-tetrahydrocannabinol (THC-COOH). Additionally, the effects of THC in botanical marijuana may also be modified by the presence of other cannabinoids and terpenes within the plant [3]. Cannabidiol (CBD) is another important psychoactive agent in marijuana (usually present at much lower concentrations than THC), which is neither an agonist nor a partial agonist but modifies CB1 receptor activity via allosteric modulation [1]. It is shown to be nonaddictive and safe as reflected by LD50, which is more than 100 times greater than the oral dose [3]. More importantly, CBD has also been shown to have preliminary evidence in the management of atonic seizures [4], social anxiety [5], and psychosis in patients with Parkinson’s disease [6]. In addition, CBD is the only marijuana agent that has been approved by the FDA to manage treatment-refractory seizures in children. Although it is theoretically plausible that partial agonism with THC may neutralize some of the neurotoxic effects of SCs, CBD represents a safer and more acceptable approach to neutralize toxic effects of SCs due to its nonaddictive potential and selective allosteric modulation of CB1 receptors. In this context, CBD may provide a specific antidote to the neurotoxicity with SCs [7]. More importantly, approval of CBD formulation (i.e., EpidiolexTM) can ensure qualitative and quantitative monitoring by the FDA. Therefore, we propose to explore CBD treatment to manage overdose and toxicity with SCs, which is increasingly recognized as a life-threatening emergency, especially in the emergency settings across the United States.","PeriodicalId":18415,"journal":{"name":"Medical Cannabis and Cannabinoids","volume":"3 1","pages":"74-75"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000506635","citationCount":"4","resultStr":"{\"title\":\"Potential Treatment for Overdose with Synthetic Cannabinoids.\",\"authors\":\"Grant Meredith, Michael DeLollis, Mujeeb U Shad\",\"doi\":\"10.1159/000506635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emergency departments are increasingly reporting overdoses with synthetic cannabinoids (SCs), such as K2 and Spice, presenting not only as agitation, paranoia, anxiety, and confusion, but also medical complications, such as palpitations, hypertension, nausea, vomiting, and seizures [1]. Multiple deaths have also been reported with SC overdoses [2]. One of the reasons for such high level of toxicity with SCs is their potent agonist activity at cannabinoid type-1 (CB1) receptor without any action on the cannabinoid type-2 (CB2) receptor, which further adds to the adverse effect profile of SCs, as CB2 receptors have been shown to neutralize some of the CB1 receptor activation. However, in contrast to SCs, delta-9-tetrahydrocannabinol (THC; primary psychoactive substance in botanical marijuana) is a partial agonist at CB1 and CB2 receptors. We believe that it is the difference between partial and full agonism at CB1 receptors that makes the SCs so much more toxic than botanical marijuana or THC. In addition, SCs have longer half-lives along with active metabolites, whereas THC is primarily metabolized into the inactive metabolite 11-nor-9-carboxy-9-tetrahydrocannabinol (THC-COOH). Additionally, the effects of THC in botanical marijuana may also be modified by the presence of other cannabinoids and terpenes within the plant [3]. Cannabidiol (CBD) is another important psychoactive agent in marijuana (usually present at much lower concentrations than THC), which is neither an agonist nor a partial agonist but modifies CB1 receptor activity via allosteric modulation [1]. It is shown to be nonaddictive and safe as reflected by LD50, which is more than 100 times greater than the oral dose [3]. More importantly, CBD has also been shown to have preliminary evidence in the management of atonic seizures [4], social anxiety [5], and psychosis in patients with Parkinson’s disease [6]. In addition, CBD is the only marijuana agent that has been approved by the FDA to manage treatment-refractory seizures in children. Although it is theoretically plausible that partial agonism with THC may neutralize some of the neurotoxic effects of SCs, CBD represents a safer and more acceptable approach to neutralize toxic effects of SCs due to its nonaddictive potential and selective allosteric modulation of CB1 receptors. In this context, CBD may provide a specific antidote to the neurotoxicity with SCs [7]. More importantly, approval of CBD formulation (i.e., EpidiolexTM) can ensure qualitative and quantitative monitoring by the FDA. Therefore, we propose to explore CBD treatment to manage overdose and toxicity with SCs, which is increasingly recognized as a life-threatening emergency, especially in the emergency settings across the United States.\",\"PeriodicalId\":18415,\"journal\":{\"name\":\"Medical Cannabis and Cannabinoids\",\"volume\":\"3 1\",\"pages\":\"74-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000506635\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Cannabis and Cannabinoids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000506635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Cannabis and Cannabinoids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000506635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential Treatment for Overdose with Synthetic Cannabinoids.
Emergency departments are increasingly reporting overdoses with synthetic cannabinoids (SCs), such as K2 and Spice, presenting not only as agitation, paranoia, anxiety, and confusion, but also medical complications, such as palpitations, hypertension, nausea, vomiting, and seizures [1]. Multiple deaths have also been reported with SC overdoses [2]. One of the reasons for such high level of toxicity with SCs is their potent agonist activity at cannabinoid type-1 (CB1) receptor without any action on the cannabinoid type-2 (CB2) receptor, which further adds to the adverse effect profile of SCs, as CB2 receptors have been shown to neutralize some of the CB1 receptor activation. However, in contrast to SCs, delta-9-tetrahydrocannabinol (THC; primary psychoactive substance in botanical marijuana) is a partial agonist at CB1 and CB2 receptors. We believe that it is the difference between partial and full agonism at CB1 receptors that makes the SCs so much more toxic than botanical marijuana or THC. In addition, SCs have longer half-lives along with active metabolites, whereas THC is primarily metabolized into the inactive metabolite 11-nor-9-carboxy-9-tetrahydrocannabinol (THC-COOH). Additionally, the effects of THC in botanical marijuana may also be modified by the presence of other cannabinoids and terpenes within the plant [3]. Cannabidiol (CBD) is another important psychoactive agent in marijuana (usually present at much lower concentrations than THC), which is neither an agonist nor a partial agonist but modifies CB1 receptor activity via allosteric modulation [1]. It is shown to be nonaddictive and safe as reflected by LD50, which is more than 100 times greater than the oral dose [3]. More importantly, CBD has also been shown to have preliminary evidence in the management of atonic seizures [4], social anxiety [5], and psychosis in patients with Parkinson’s disease [6]. In addition, CBD is the only marijuana agent that has been approved by the FDA to manage treatment-refractory seizures in children. Although it is theoretically plausible that partial agonism with THC may neutralize some of the neurotoxic effects of SCs, CBD represents a safer and more acceptable approach to neutralize toxic effects of SCs due to its nonaddictive potential and selective allosteric modulation of CB1 receptors. In this context, CBD may provide a specific antidote to the neurotoxicity with SCs [7]. More importantly, approval of CBD formulation (i.e., EpidiolexTM) can ensure qualitative and quantitative monitoring by the FDA. Therefore, we propose to explore CBD treatment to manage overdose and toxicity with SCs, which is increasingly recognized as a life-threatening emergency, especially in the emergency settings across the United States.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Cannabis and Cannabinoids
Medical Cannabis and Cannabinoids Medicine-Complementary and Alternative Medicine
CiteScore
6.00
自引率
0.00%
发文量
18
审稿时长
18 weeks
期刊最新文献
Proceedings of the 2024 Cannabis Clinical Outcomes Research Conference. Development and in vitro Evaluation of Cannabidiol Mucoadhesive Buccal Film Formulations Using Hot-Melt Extrusion Technology. Cannabinoids for the Treatment of Glaucoma: A Review. Long-Term Treatment for Unspecified Anxiety Disorders with Cannabidiol: A Retrospective Case Series from Real-World Evidence in Colombia. Use of Cannabidiol-Dominant Extract as Co-Adjuvant Therapy for Type 2 Diabetes Mellitus Treatment in Feline: Case Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1