{"title":"哺乳动物胚胎着床前囊胚的发育。","authors":"Bhanu P Telugu, Laramie Pence","doi":"10.1007/978-3-030-77360-1_3","DOIUrl":null,"url":null,"abstract":"<p><p>The preimplantation mammalian embryo is a simplistic, self-contained, and a superior model for investigating the inherent complexities of cell fate decision mechanisms. All mammals begin their humble journey from a single-cell fertilized zygote contained within a proteinaceous coat called the zona pellucida. The zygote embarks on a series of well-orchestrated events, beginning with the activation of embryonic genome, transition from meiotic to mitotic divisions, spatial organization of the cells, timely differentiation into committed trophectoderm (TE) and primitive endoderm (PrE), and ultimately escape from zona pellucida for implantation into the uterus. The entire development of preimplantation embryo can be studied in vitro using a minimalistic and defined culture system. The ease of culture along with the ability to manipulate gene expression and image the embryos makes them an ideal model system for investigation into the first two of several cell fate decisions made by the embryo that result in a pluripotent epiblast (EPI) and differentiated TE and PrE lineages. This chapter reviews our latest knowledge of preimplantation embryo development, setting the stage for understanding placental development in subsequent chapters in this Book.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"234 ","pages":"21-40"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of Pre-implantation Mammalian Blastocyst.\",\"authors\":\"Bhanu P Telugu, Laramie Pence\",\"doi\":\"10.1007/978-3-030-77360-1_3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The preimplantation mammalian embryo is a simplistic, self-contained, and a superior model for investigating the inherent complexities of cell fate decision mechanisms. All mammals begin their humble journey from a single-cell fertilized zygote contained within a proteinaceous coat called the zona pellucida. The zygote embarks on a series of well-orchestrated events, beginning with the activation of embryonic genome, transition from meiotic to mitotic divisions, spatial organization of the cells, timely differentiation into committed trophectoderm (TE) and primitive endoderm (PrE), and ultimately escape from zona pellucida for implantation into the uterus. The entire development of preimplantation embryo can be studied in vitro using a minimalistic and defined culture system. The ease of culture along with the ability to manipulate gene expression and image the embryos makes them an ideal model system for investigation into the first two of several cell fate decisions made by the embryo that result in a pluripotent epiblast (EPI) and differentiated TE and PrE lineages. This chapter reviews our latest knowledge of preimplantation embryo development, setting the stage for understanding placental development in subsequent chapters in this Book.</p>\",\"PeriodicalId\":50879,\"journal\":{\"name\":\"Advances in Anatomy Embryology and Cell Biology\",\"volume\":\"234 \",\"pages\":\"21-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Anatomy Embryology and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-77360-1_3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Anatomy Embryology and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/978-3-030-77360-1_3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Development of Pre-implantation Mammalian Blastocyst.
The preimplantation mammalian embryo is a simplistic, self-contained, and a superior model for investigating the inherent complexities of cell fate decision mechanisms. All mammals begin their humble journey from a single-cell fertilized zygote contained within a proteinaceous coat called the zona pellucida. The zygote embarks on a series of well-orchestrated events, beginning with the activation of embryonic genome, transition from meiotic to mitotic divisions, spatial organization of the cells, timely differentiation into committed trophectoderm (TE) and primitive endoderm (PrE), and ultimately escape from zona pellucida for implantation into the uterus. The entire development of preimplantation embryo can be studied in vitro using a minimalistic and defined culture system. The ease of culture along with the ability to manipulate gene expression and image the embryos makes them an ideal model system for investigation into the first two of several cell fate decisions made by the embryo that result in a pluripotent epiblast (EPI) and differentiated TE and PrE lineages. This chapter reviews our latest knowledge of preimplantation embryo development, setting the stage for understanding placental development in subsequent chapters in this Book.
期刊介绍:
"Advances in Anatomy, Embryology and Cell Biology" presents critical reviews on all topical fields of normal and experimental anatomy including cell biology. The multi-perspective presentation of morphological aspects of basic biological phenomen in the human constitutes the main focus of the series. The contributions re-evaluate the latest findings and show ways for further research.