{"title":"TGF-β1与STI-571联合治疗可诱导BCR-ABL癌基因表达细胞凋亡。","authors":"Masoome Bakhshayesh, Ladan Hosseini Gohari, Mahmood Barati, Majid Safa","doi":"10.1515/bmc-2021-0016","DOIUrl":null,"url":null,"abstract":"<p><p>The BCR-ABL oncogene is a tyrosine kinase gene that is over-expressed in CML. It inhibits the TGF-β1 signaling pathway. Due to resistance of cells to the tyrosine kinase inhibitor, STI-571, the combined effect of STI-571 and TGF-β1 on K562 cells was studied in the present research. Results revealed that the TGF-β1 cell signaling pathway, which is activated in K562 cells treated with TGF-β1, activates collective cell signaling pathways involved in survival and apoptosis. It is noteworthy that treating K562 cells with STI-571 triggered apoptotic pathways, accompanied by a reduction in proteins such as Bcl-xL, Bcl-2, p-AKT, p-Stat5, p-FOXO3, and Mcl-1 and an increase in the pro-apoptotic proteins PARP cleavage, and p27, leading to an increase in sub-G1 phase-arrested and Annexin-positive cells. Interestingly, the proliferation behavior of TGF-β1-induced cells was changed with the combination therapy, and STI-571-induced apoptosis was also prompted by this combination. Thus, combination treatment appears to promote sub-G1 cell cycle arrest compared to individually treated cells. Furthermore, it strongly triggered apoptotic signaling. In conclusion, TGF-β1 did not negatively impact the effect of STI-571, based on positive annexin cells, and AKT protein phosphorylation remains effective in apoptosis.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"144-155"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination therapy using TGF-β1 and STI-571 can induce apoptosis in BCR-ABL oncogene-expressing cells.\",\"authors\":\"Masoome Bakhshayesh, Ladan Hosseini Gohari, Mahmood Barati, Majid Safa\",\"doi\":\"10.1515/bmc-2021-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The BCR-ABL oncogene is a tyrosine kinase gene that is over-expressed in CML. It inhibits the TGF-β1 signaling pathway. Due to resistance of cells to the tyrosine kinase inhibitor, STI-571, the combined effect of STI-571 and TGF-β1 on K562 cells was studied in the present research. Results revealed that the TGF-β1 cell signaling pathway, which is activated in K562 cells treated with TGF-β1, activates collective cell signaling pathways involved in survival and apoptosis. It is noteworthy that treating K562 cells with STI-571 triggered apoptotic pathways, accompanied by a reduction in proteins such as Bcl-xL, Bcl-2, p-AKT, p-Stat5, p-FOXO3, and Mcl-1 and an increase in the pro-apoptotic proteins PARP cleavage, and p27, leading to an increase in sub-G1 phase-arrested and Annexin-positive cells. Interestingly, the proliferation behavior of TGF-β1-induced cells was changed with the combination therapy, and STI-571-induced apoptosis was also prompted by this combination. Thus, combination treatment appears to promote sub-G1 cell cycle arrest compared to individually treated cells. Furthermore, it strongly triggered apoptotic signaling. In conclusion, TGF-β1 did not negatively impact the effect of STI-571, based on positive annexin cells, and AKT protein phosphorylation remains effective in apoptosis.</p>\",\"PeriodicalId\":38392,\"journal\":{\"name\":\"Biomolecular Concepts\",\"volume\":\" \",\"pages\":\"144-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular Concepts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmc-2021-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2021-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Combination therapy using TGF-β1 and STI-571 can induce apoptosis in BCR-ABL oncogene-expressing cells.
The BCR-ABL oncogene is a tyrosine kinase gene that is over-expressed in CML. It inhibits the TGF-β1 signaling pathway. Due to resistance of cells to the tyrosine kinase inhibitor, STI-571, the combined effect of STI-571 and TGF-β1 on K562 cells was studied in the present research. Results revealed that the TGF-β1 cell signaling pathway, which is activated in K562 cells treated with TGF-β1, activates collective cell signaling pathways involved in survival and apoptosis. It is noteworthy that treating K562 cells with STI-571 triggered apoptotic pathways, accompanied by a reduction in proteins such as Bcl-xL, Bcl-2, p-AKT, p-Stat5, p-FOXO3, and Mcl-1 and an increase in the pro-apoptotic proteins PARP cleavage, and p27, leading to an increase in sub-G1 phase-arrested and Annexin-positive cells. Interestingly, the proliferation behavior of TGF-β1-induced cells was changed with the combination therapy, and STI-571-induced apoptosis was also prompted by this combination. Thus, combination treatment appears to promote sub-G1 cell cycle arrest compared to individually treated cells. Furthermore, it strongly triggered apoptotic signaling. In conclusion, TGF-β1 did not negatively impact the effect of STI-571, based on positive annexin cells, and AKT protein phosphorylation remains effective in apoptosis.
Biomolecular ConceptsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍:
BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.