{"title":"具有不同因果变异频率的阈值性状的全基因组关联研究的统计能力。","authors":"Hassan Khanzadeh, Navid Ghavi Hossein-Zadeh, Shahrokh Ghovvati","doi":"10.1007/s10709-021-00140-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the effects of incidence rate, heritability, and polygenic variance on the statistical power of genome-wide association studies (GWAS) for threshold traits. Different incidence rates of threshold trait (1, 3, 5, 10, 25, 40, 50, 60, 75 and 90%), heritability (10 and 25%), and polygenic variance ratio (0 and 25%) were simulated separately for common (MAF ≥ 0.05), low-frequency (0.05 > MAF ≥ 0.01), and rare (MAF < 0.01) variants. Association studies were performed by logistic and linear mixed models. The highest statistical powers were observed in common and low-frequency variants with an incidence of 25-50% and 10-40%, respectively, but for rare variants, the highest statistical power was observed at low incidence. For all causal variant frequencies, the estimated heritability decline with an increase in incidence rate. We found high statistical power for traits with high heritability. In contrast, those with a high polygenic variance ratio have lower statistical power to detect common causal variants using a linear mixed model. These results demonstrate that the incidence rate of threshold traits, heritability, and polygenic variance may affect the statistical power of GWAS. Therefore, it is recommended that the effect of incidence rate, heritability, and polygenic variance be considered in designing GWAS for threshold traits.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"150 1","pages":"51-57"},"PeriodicalIF":1.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The statistical power of genome-wide association studies for threshold traits with different frequencies of causal variants.\",\"authors\":\"Hassan Khanzadeh, Navid Ghavi Hossein-Zadeh, Shahrokh Ghovvati\",\"doi\":\"10.1007/s10709-021-00140-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the effects of incidence rate, heritability, and polygenic variance on the statistical power of genome-wide association studies (GWAS) for threshold traits. Different incidence rates of threshold trait (1, 3, 5, 10, 25, 40, 50, 60, 75 and 90%), heritability (10 and 25%), and polygenic variance ratio (0 and 25%) were simulated separately for common (MAF ≥ 0.05), low-frequency (0.05 > MAF ≥ 0.01), and rare (MAF < 0.01) variants. Association studies were performed by logistic and linear mixed models. The highest statistical powers were observed in common and low-frequency variants with an incidence of 25-50% and 10-40%, respectively, but for rare variants, the highest statistical power was observed at low incidence. For all causal variant frequencies, the estimated heritability decline with an increase in incidence rate. We found high statistical power for traits with high heritability. In contrast, those with a high polygenic variance ratio have lower statistical power to detect common causal variants using a linear mixed model. These results demonstrate that the incidence rate of threshold traits, heritability, and polygenic variance may affect the statistical power of GWAS. Therefore, it is recommended that the effect of incidence rate, heritability, and polygenic variance be considered in designing GWAS for threshold traits.</p>\",\"PeriodicalId\":55121,\"journal\":{\"name\":\"Genetica\",\"volume\":\"150 1\",\"pages\":\"51-57\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10709-021-00140-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-021-00140-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The statistical power of genome-wide association studies for threshold traits with different frequencies of causal variants.
This study aimed to investigate the effects of incidence rate, heritability, and polygenic variance on the statistical power of genome-wide association studies (GWAS) for threshold traits. Different incidence rates of threshold trait (1, 3, 5, 10, 25, 40, 50, 60, 75 and 90%), heritability (10 and 25%), and polygenic variance ratio (0 and 25%) were simulated separately for common (MAF ≥ 0.05), low-frequency (0.05 > MAF ≥ 0.01), and rare (MAF < 0.01) variants. Association studies were performed by logistic and linear mixed models. The highest statistical powers were observed in common and low-frequency variants with an incidence of 25-50% and 10-40%, respectively, but for rare variants, the highest statistical power was observed at low incidence. For all causal variant frequencies, the estimated heritability decline with an increase in incidence rate. We found high statistical power for traits with high heritability. In contrast, those with a high polygenic variance ratio have lower statistical power to detect common causal variants using a linear mixed model. These results demonstrate that the incidence rate of threshold traits, heritability, and polygenic variance may affect the statistical power of GWAS. Therefore, it is recommended that the effect of incidence rate, heritability, and polygenic variance be considered in designing GWAS for threshold traits.
期刊介绍:
Genetica publishes papers dealing with genetics, genomics, and evolution. Our journal covers novel advances in the fields of genomics, conservation genetics, genotype-phenotype interactions, evo-devo, population and quantitative genetics, and biodiversity. Genetica publishes original research articles addressing novel conceptual, experimental, and theoretical issues in these areas, whatever the taxon considered. Biomedical papers and papers on breeding animal and plant genetics are not within the scope of Genetica, unless framed in an evolutionary context. Recent advances in genetics, genomics and evolution are also published in thematic issues and synthesis papers published by experts in the field.