Islam M Radwan, Phillip M Potter, Dionysios D Dionysiou, Souhail R Al-Abed
{"title":"银纳米粒子与表面活性剂基家用表面清洁剂的相互作用。","authors":"Islam M Radwan, Phillip M Potter, Dionysios D Dionysiou, Souhail R Al-Abed","doi":"10.1089/ees.2020.0160","DOIUrl":null,"url":null,"abstract":"<p><p>Silver nanoparticles (AgNPs) are the most widely used engineered nanomaterials in consumer products, primarily due to their antimicrobial properties. This widespread usage has resulted in concerns regarding potential adverse environmental impacts and increased probability of human exposure. As the number of AgNP consumer products grows, the likelihood of interactions with other household materials increases. AgNP products have the potential to interact with household cleaning products in laundry, dishwashers, or during general use of all-purpose surface cleaners. This study has investigated the interaction between surfactant-based surface cleaning products and AgNPs of different sizes and with different capping agents. One AgNP consumer product, two laboratory-synthesized AgNPs, and ionic silver were selected for interaction with one cationic, one anionic, and one nonionic surfactant product to simulate AgNP transformations during consumer product usage before disposal and subsequent environmental release. Changes in size, morphology, and chemical composition were detected during a 60 min exposure to surfactant-based surface cleaning products using ultraviolet-visible (UV/Vis) spectroscopy, transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX), and dynamic light scattering (DLS). Generally, once AgNP suspensions were exposed to surfactant-based surface cleaning products, all the particles showed an initial aggregation, likely due to disruption of their capping agents. Over the 60 min exposure, cleaning agent-1 (cationic) showed more significant particle aggregates than cleaning agent-2 (anionic) and cleaning agent-3 (nonionic). In addition, UV/Vis, TEM-EDX, and DLS confirmed formation of incidental AgNPs from interaction of ionic silver with all surfactant types.</p>","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"38 6","pages":"481-488"},"PeriodicalIF":1.8000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525430/pdf/nihms-1742204.pdf","citationCount":"3","resultStr":"{\"title\":\"Silver Nanoparticle Interactions with Surfactant-Based Household Surface Cleaners.\",\"authors\":\"Islam M Radwan, Phillip M Potter, Dionysios D Dionysiou, Souhail R Al-Abed\",\"doi\":\"10.1089/ees.2020.0160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silver nanoparticles (AgNPs) are the most widely used engineered nanomaterials in consumer products, primarily due to their antimicrobial properties. This widespread usage has resulted in concerns regarding potential adverse environmental impacts and increased probability of human exposure. As the number of AgNP consumer products grows, the likelihood of interactions with other household materials increases. AgNP products have the potential to interact with household cleaning products in laundry, dishwashers, or during general use of all-purpose surface cleaners. This study has investigated the interaction between surfactant-based surface cleaning products and AgNPs of different sizes and with different capping agents. One AgNP consumer product, two laboratory-synthesized AgNPs, and ionic silver were selected for interaction with one cationic, one anionic, and one nonionic surfactant product to simulate AgNP transformations during consumer product usage before disposal and subsequent environmental release. Changes in size, morphology, and chemical composition were detected during a 60 min exposure to surfactant-based surface cleaning products using ultraviolet-visible (UV/Vis) spectroscopy, transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX), and dynamic light scattering (DLS). Generally, once AgNP suspensions were exposed to surfactant-based surface cleaning products, all the particles showed an initial aggregation, likely due to disruption of their capping agents. Over the 60 min exposure, cleaning agent-1 (cationic) showed more significant particle aggregates than cleaning agent-2 (anionic) and cleaning agent-3 (nonionic). In addition, UV/Vis, TEM-EDX, and DLS confirmed formation of incidental AgNPs from interaction of ionic silver with all surfactant types.</p>\",\"PeriodicalId\":11777,\"journal\":{\"name\":\"Environmental Engineering Science\",\"volume\":\"38 6\",\"pages\":\"481-488\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525430/pdf/nihms-1742204.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Engineering Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1089/ees.2020.0160\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Engineering Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1089/ees.2020.0160","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Silver Nanoparticle Interactions with Surfactant-Based Household Surface Cleaners.
Silver nanoparticles (AgNPs) are the most widely used engineered nanomaterials in consumer products, primarily due to their antimicrobial properties. This widespread usage has resulted in concerns regarding potential adverse environmental impacts and increased probability of human exposure. As the number of AgNP consumer products grows, the likelihood of interactions with other household materials increases. AgNP products have the potential to interact with household cleaning products in laundry, dishwashers, or during general use of all-purpose surface cleaners. This study has investigated the interaction between surfactant-based surface cleaning products and AgNPs of different sizes and with different capping agents. One AgNP consumer product, two laboratory-synthesized AgNPs, and ionic silver were selected for interaction with one cationic, one anionic, and one nonionic surfactant product to simulate AgNP transformations during consumer product usage before disposal and subsequent environmental release. Changes in size, morphology, and chemical composition were detected during a 60 min exposure to surfactant-based surface cleaning products using ultraviolet-visible (UV/Vis) spectroscopy, transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX), and dynamic light scattering (DLS). Generally, once AgNP suspensions were exposed to surfactant-based surface cleaning products, all the particles showed an initial aggregation, likely due to disruption of their capping agents. Over the 60 min exposure, cleaning agent-1 (cationic) showed more significant particle aggregates than cleaning agent-2 (anionic) and cleaning agent-3 (nonionic). In addition, UV/Vis, TEM-EDX, and DLS confirmed formation of incidental AgNPs from interaction of ionic silver with all surfactant types.
期刊介绍:
Environmental Engineering Science explores innovative solutions to problems in air, water, and land contamination and waste disposal, with coverage of climate change, environmental risk assessment and management, green technologies, sustainability, and environmental policy. Published monthly online, the Journal features applications of environmental engineering and scientific discoveries, policy issues, environmental economics, and sustainable development.