Anthony Cheung, Catherine Argyriou, Christine Yergeau, Yasmin D'Souza, Émilie Riou, Sébastien Lévesque, Gerald Raymond, Mebratu Daba, Irakli Rtskhiladze, Tinatin Tkemaladze, Laura Adang, Roberta La Piana, Geneviève Bernard, Nancy Braverman
{"title":"由PEX16突变引起的非典型齐薇格谱系障碍患者的临床、神经放射学和分子特征:一个病例系列","authors":"Anthony Cheung, Catherine Argyriou, Christine Yergeau, Yasmin D'Souza, Émilie Riou, Sébastien Lévesque, Gerald Raymond, Mebratu Daba, Irakli Rtskhiladze, Tinatin Tkemaladze, Laura Adang, Roberta La Piana, Geneviève Bernard, Nancy Braverman","doi":"10.1007/s10048-022-00684-7","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxisome biogenesis disorders-Zellweger spectrum disorders (PBD-ZSD)-are primarily autosomal recessive disorders caused by mutations in any of 13 PEX genes involved in peroxisome assembly. Compared to other PEX-related disorders, some PEX16 defects are associated with an atypical phenotype consisting of spasticity, cerebellar dysfunction, preserved cognition, and prolonged survival. In this case series, medical records and brain MRIs from 7 patients with this PEX16 presentation were reviewed to further characterize this phenotype. Classic PBD features such as sensory deficits and amelogenesis imperfecta were absent in all 7 patients, while all patients had hypertonia. Five patients were noted to have dystonia and received a treatment trial of levodopa/carbidopa. Four treated patients had partial but significant improvements in their dystonia and tremors, and 1 patient had only minimal response. Brain MRI studies commonly showed T2/FLAIR hyperintensities in the brainstem, superior and middle cerebellar peduncles, corticospinal tracts, and splenium of the corpus callosum. Genetic analysis revealed novel biallelic variants in 3 probands (c.683C > T/372delG; c.692A > G homozygous; c.865C > G/451C > T) and 1 novel variant (c.956_958delCGC) in another proband. We demonstrated residual PEX16 protein amounts by immunoblotting in fibroblasts available from 5 patients with this atypical PEX16 disease (3 from this series, 2 previously reported), in contrast to the absence of PEX16 protein in fibroblasts from a patient with the severe ZSD presentation. This study further characterizes the phenotype of PEX16 defects by highlighting novel and distinctive clinical, neuroradiological, and molecular features of the disease and proposes a potential treatment for the dystonia. ClinicalTrials.gov Identifier: NCT01668186. Date of registration: January 2012.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical, neuroradiological, and molecular characterization of patients with atypical Zellweger spectrum disorder caused by PEX16 mutations: a case series.\",\"authors\":\"Anthony Cheung, Catherine Argyriou, Christine Yergeau, Yasmin D'Souza, Émilie Riou, Sébastien Lévesque, Gerald Raymond, Mebratu Daba, Irakli Rtskhiladze, Tinatin Tkemaladze, Laura Adang, Roberta La Piana, Geneviève Bernard, Nancy Braverman\",\"doi\":\"10.1007/s10048-022-00684-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peroxisome biogenesis disorders-Zellweger spectrum disorders (PBD-ZSD)-are primarily autosomal recessive disorders caused by mutations in any of 13 PEX genes involved in peroxisome assembly. Compared to other PEX-related disorders, some PEX16 defects are associated with an atypical phenotype consisting of spasticity, cerebellar dysfunction, preserved cognition, and prolonged survival. In this case series, medical records and brain MRIs from 7 patients with this PEX16 presentation were reviewed to further characterize this phenotype. Classic PBD features such as sensory deficits and amelogenesis imperfecta were absent in all 7 patients, while all patients had hypertonia. Five patients were noted to have dystonia and received a treatment trial of levodopa/carbidopa. Four treated patients had partial but significant improvements in their dystonia and tremors, and 1 patient had only minimal response. Brain MRI studies commonly showed T2/FLAIR hyperintensities in the brainstem, superior and middle cerebellar peduncles, corticospinal tracts, and splenium of the corpus callosum. Genetic analysis revealed novel biallelic variants in 3 probands (c.683C > T/372delG; c.692A > G homozygous; c.865C > G/451C > T) and 1 novel variant (c.956_958delCGC) in another proband. We demonstrated residual PEX16 protein amounts by immunoblotting in fibroblasts available from 5 patients with this atypical PEX16 disease (3 from this series, 2 previously reported), in contrast to the absence of PEX16 protein in fibroblasts from a patient with the severe ZSD presentation. This study further characterizes the phenotype of PEX16 defects by highlighting novel and distinctive clinical, neuroradiological, and molecular features of the disease and proposes a potential treatment for the dystonia. ClinicalTrials.gov Identifier: NCT01668186. Date of registration: January 2012.</p>\",\"PeriodicalId\":56106,\"journal\":{\"name\":\"Neurogenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10048-022-00684-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10048-022-00684-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Clinical, neuroradiological, and molecular characterization of patients with atypical Zellweger spectrum disorder caused by PEX16 mutations: a case series.
Peroxisome biogenesis disorders-Zellweger spectrum disorders (PBD-ZSD)-are primarily autosomal recessive disorders caused by mutations in any of 13 PEX genes involved in peroxisome assembly. Compared to other PEX-related disorders, some PEX16 defects are associated with an atypical phenotype consisting of spasticity, cerebellar dysfunction, preserved cognition, and prolonged survival. In this case series, medical records and brain MRIs from 7 patients with this PEX16 presentation were reviewed to further characterize this phenotype. Classic PBD features such as sensory deficits and amelogenesis imperfecta were absent in all 7 patients, while all patients had hypertonia. Five patients were noted to have dystonia and received a treatment trial of levodopa/carbidopa. Four treated patients had partial but significant improvements in their dystonia and tremors, and 1 patient had only minimal response. Brain MRI studies commonly showed T2/FLAIR hyperintensities in the brainstem, superior and middle cerebellar peduncles, corticospinal tracts, and splenium of the corpus callosum. Genetic analysis revealed novel biallelic variants in 3 probands (c.683C > T/372delG; c.692A > G homozygous; c.865C > G/451C > T) and 1 novel variant (c.956_958delCGC) in another proband. We demonstrated residual PEX16 protein amounts by immunoblotting in fibroblasts available from 5 patients with this atypical PEX16 disease (3 from this series, 2 previously reported), in contrast to the absence of PEX16 protein in fibroblasts from a patient with the severe ZSD presentation. This study further characterizes the phenotype of PEX16 defects by highlighting novel and distinctive clinical, neuroradiological, and molecular features of the disease and proposes a potential treatment for the dystonia. ClinicalTrials.gov Identifier: NCT01668186. Date of registration: January 2012.
期刊介绍:
Neurogenetics publishes findings that contribute to a better understanding of the genetic basis of normal and abnormal function of the nervous system. Neurogenetic disorders are the main focus of the journal. Neurogenetics therefore includes findings in humans and other organisms that help understand neurological disease mechanisms and publishes papers from many different fields such as biophysics, cell biology, human genetics, neuroanatomy, neurochemistry, neurology, neuropathology, neurosurgery and psychiatry.
All papers submitted to Neurogenetics should be of sufficient immediate importance to justify urgent publication. They should present new scientific results. Data merely confirming previously published findings are not acceptable.