生物软组织粘弹性特性的数学模型。

IF 1.3 4区 生物学 Q3 BIOLOGY Theory in Biosciences Pub Date : 2022-02-01 Epub Date: 2022-02-03 DOI:10.1007/s12064-021-00361-7
Man Xi, Guohong Yun, B Narsu
{"title":"生物软组织粘弹性特性的数学模型。","authors":"Man Xi,&nbsp;Guohong Yun,&nbsp;B Narsu","doi":"10.1007/s12064-021-00361-7","DOIUrl":null,"url":null,"abstract":"<p><p>A quaternary viscoelastic structure model with two characteristic times is presented to describe the viscoelastic properties of parallel-fibered collagen tissue. The comparison results of model prediction and experimental data of rabbit medial collateral ligaments show that the model could accurately describe viscoelastic behavior such as stress-relaxation, strain-strengthening and creep of bio-soft-tissue within a small scope of errors. To study the biomechanical mechanism of viscoelasticity that biological soft tissue shows, the influence of model parameters on viscoelastic behavior of bio-soft-tissue is analyzed and researched, which indicated that the major influential elements of stress-relaxation in bio-soft-tissue are elastic modulus, relaxation time and strain rate of proteoglycan-rich matrix. The influence of elastic modulus of collagen fibers on stress-relaxation is not significant. However, the nonlinearity of stress-strain curve and viscoelastic behavior of bio-soft-tissue mostly depends on recruitment and reorientation of collagen fibers under external loading.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model for viscoelastic properties of biological soft tissue.\",\"authors\":\"Man Xi,&nbsp;Guohong Yun,&nbsp;B Narsu\",\"doi\":\"10.1007/s12064-021-00361-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A quaternary viscoelastic structure model with two characteristic times is presented to describe the viscoelastic properties of parallel-fibered collagen tissue. The comparison results of model prediction and experimental data of rabbit medial collateral ligaments show that the model could accurately describe viscoelastic behavior such as stress-relaxation, strain-strengthening and creep of bio-soft-tissue within a small scope of errors. To study the biomechanical mechanism of viscoelasticity that biological soft tissue shows, the influence of model parameters on viscoelastic behavior of bio-soft-tissue is analyzed and researched, which indicated that the major influential elements of stress-relaxation in bio-soft-tissue are elastic modulus, relaxation time and strain rate of proteoglycan-rich matrix. The influence of elastic modulus of collagen fibers on stress-relaxation is not significant. However, the nonlinearity of stress-strain curve and viscoelastic behavior of bio-soft-tissue mostly depends on recruitment and reorientation of collagen fibers under external loading.</p>\",\"PeriodicalId\":54428,\"journal\":{\"name\":\"Theory in Biosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory in Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12064-021-00361-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-021-00361-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种具有两个特征时间的四元粘弹性结构模型来描述平行纤维胶原组织的粘弹性特性。兔内侧副韧带模型预测与实验数据的对比结果表明,该模型能在较小的误差范围内准确描述生物软组织的应力松弛、应变强化和蠕变等粘弹性行为。为研究生物软组织粘弹性的生物力学机制,分析研究了模型参数对生物软组织粘弹性行为的影响,结果表明,影响生物软组织应力松弛的主要因素是弹性模量、松弛时间和富蛋白聚糖基质的应变速率。胶原纤维弹性模量对应力松弛的影响不显著。然而,生物软组织的应力-应变曲线的非线性和粘弹性行为主要取决于胶原纤维在外加载荷作用下的重新聚集和取向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mathematical model for viscoelastic properties of biological soft tissue.

A quaternary viscoelastic structure model with two characteristic times is presented to describe the viscoelastic properties of parallel-fibered collagen tissue. The comparison results of model prediction and experimental data of rabbit medial collateral ligaments show that the model could accurately describe viscoelastic behavior such as stress-relaxation, strain-strengthening and creep of bio-soft-tissue within a small scope of errors. To study the biomechanical mechanism of viscoelasticity that biological soft tissue shows, the influence of model parameters on viscoelastic behavior of bio-soft-tissue is analyzed and researched, which indicated that the major influential elements of stress-relaxation in bio-soft-tissue are elastic modulus, relaxation time and strain rate of proteoglycan-rich matrix. The influence of elastic modulus of collagen fibers on stress-relaxation is not significant. However, the nonlinearity of stress-strain curve and viscoelastic behavior of bio-soft-tissue mostly depends on recruitment and reorientation of collagen fibers under external loading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory in Biosciences
Theory in Biosciences 生物-生物学
CiteScore
2.70
自引率
9.10%
发文量
21
审稿时长
3 months
期刊介绍: Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are: Artificial Life; Bioinformatics with a focus on novel methods, phenomena, and interpretations; Bioinspired Modeling; Complexity, Robustness, and Resilience; Embodied Cognition; Evolutionary Biology; Evo-Devo; Game Theoretic Modeling; Genetics; History of Biology; Language Evolution; Mathematical Biology; Origin of Life; Philosophy of Biology; Population Biology; Systems Biology; Theoretical Ecology; Theoretical Molecular Biology; Theoretical Neuroscience & Cognition.
期刊最新文献
Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Do concepts of individuality account for individuation practices in studies of host–parasite systems? A modeling account of biological individuality Spaces of mathematical chemistry Prioritizing cervical cancer candidate genes using chaos game and fractal-based time series approach. Application of network pharmacology in synergistic action of Chinese herbal compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1