Xuemei Quan, Su Hu, Chaoguo Meng, Lulu Cheng, Yujie Lu, Yumei Xia, Wenmei Li, Huo Liang, Mengting Li, Zhijian Liang
{"title":"急性基底节区缺血性脑卒中患者低频波动幅度的频率特异性变化。","authors":"Xuemei Quan, Su Hu, Chaoguo Meng, Lulu Cheng, Yujie Lu, Yumei Xia, Wenmei Li, Huo Liang, Mengting Li, Zhijian Liang","doi":"10.1155/2022/4106131","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study was to investigate the characteristics of different frequency bands in the spontaneous brain activity among patients with acute basal ganglia ischemic stroke (BGIS).</p><p><strong>Methods: </strong>In the present study, thirty-four patients with acute BGIS and forty-four healthy controls were examined by resting-state functional magnetic resonance imaging (rs-fMRI) from May 2019 to December 2020. Two amplitude methods including amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) calculated in three frequency bands (conventional frequency band: 0.01-0.08 Hz; slow-5 frequency band: 0.01-0.027 Hz; and slow-4 frequency band: 0.027-0.073 Hz) were conducted to evaluate the spontaneous brain activity in patients with acute BGIS and healthy controls (HCs). Gaussian Random Field Theory (GRF, voxel <i>p</i> < 0.01 and cluster <i>p</i> < 0.05) correction was applied. The correlation analyses were performed between clinical scores and altered metrics values.</p><p><strong>Results: </strong>Compared to HCs, patients with acute BGIS showed decreased ALFF in the right supramarginal gyrus (SMG) in the conventional and slow-4 bands, increased fALFF in the right middle frontal gyrus (MFG) in the conventional and slow-4 bands, and increased fALFF in the bilateral caudate in the slow-5 frequency band. The fALFF value of the right caudate in the slow-5 frequency band was negatively correlated with the clinical scores.</p><p><strong>Conclusion: </strong>In conclusion, this study showed the alterations in ALFF and fALFF in three frequency bands between patients with acute BGIS and HCs. The results reflected that the abnormal LFO amplitude might be related with different frequency bands and promoted our understanding of pathophysiological mechanism in acute BGIS.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803449/pdf/","citationCount":"7","resultStr":"{\"title\":\"Frequency-Specific Changes of Amplitude of Low-Frequency Fluctuations in Patients with Acute Basal Ganglia Ischemic Stroke.\",\"authors\":\"Xuemei Quan, Su Hu, Chaoguo Meng, Lulu Cheng, Yujie Lu, Yumei Xia, Wenmei Li, Huo Liang, Mengting Li, Zhijian Liang\",\"doi\":\"10.1155/2022/4106131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The purpose of this study was to investigate the characteristics of different frequency bands in the spontaneous brain activity among patients with acute basal ganglia ischemic stroke (BGIS).</p><p><strong>Methods: </strong>In the present study, thirty-four patients with acute BGIS and forty-four healthy controls were examined by resting-state functional magnetic resonance imaging (rs-fMRI) from May 2019 to December 2020. Two amplitude methods including amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) calculated in three frequency bands (conventional frequency band: 0.01-0.08 Hz; slow-5 frequency band: 0.01-0.027 Hz; and slow-4 frequency band: 0.027-0.073 Hz) were conducted to evaluate the spontaneous brain activity in patients with acute BGIS and healthy controls (HCs). Gaussian Random Field Theory (GRF, voxel <i>p</i> < 0.01 and cluster <i>p</i> < 0.05) correction was applied. The correlation analyses were performed between clinical scores and altered metrics values.</p><p><strong>Results: </strong>Compared to HCs, patients with acute BGIS showed decreased ALFF in the right supramarginal gyrus (SMG) in the conventional and slow-4 bands, increased fALFF in the right middle frontal gyrus (MFG) in the conventional and slow-4 bands, and increased fALFF in the bilateral caudate in the slow-5 frequency band. The fALFF value of the right caudate in the slow-5 frequency band was negatively correlated with the clinical scores.</p><p><strong>Conclusion: </strong>In conclusion, this study showed the alterations in ALFF and fALFF in three frequency bands between patients with acute BGIS and HCs. The results reflected that the abnormal LFO amplitude might be related with different frequency bands and promoted our understanding of pathophysiological mechanism in acute BGIS.</p>\",\"PeriodicalId\":51299,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803449/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4106131\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/4106131","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Frequency-Specific Changes of Amplitude of Low-Frequency Fluctuations in Patients with Acute Basal Ganglia Ischemic Stroke.
Objective: The purpose of this study was to investigate the characteristics of different frequency bands in the spontaneous brain activity among patients with acute basal ganglia ischemic stroke (BGIS).
Methods: In the present study, thirty-four patients with acute BGIS and forty-four healthy controls were examined by resting-state functional magnetic resonance imaging (rs-fMRI) from May 2019 to December 2020. Two amplitude methods including amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) calculated in three frequency bands (conventional frequency band: 0.01-0.08 Hz; slow-5 frequency band: 0.01-0.027 Hz; and slow-4 frequency band: 0.027-0.073 Hz) were conducted to evaluate the spontaneous brain activity in patients with acute BGIS and healthy controls (HCs). Gaussian Random Field Theory (GRF, voxel p < 0.01 and cluster p < 0.05) correction was applied. The correlation analyses were performed between clinical scores and altered metrics values.
Results: Compared to HCs, patients with acute BGIS showed decreased ALFF in the right supramarginal gyrus (SMG) in the conventional and slow-4 bands, increased fALFF in the right middle frontal gyrus (MFG) in the conventional and slow-4 bands, and increased fALFF in the bilateral caudate in the slow-5 frequency band. The fALFF value of the right caudate in the slow-5 frequency band was negatively correlated with the clinical scores.
Conclusion: In conclusion, this study showed the alterations in ALFF and fALFF in three frequency bands between patients with acute BGIS and HCs. The results reflected that the abnormal LFO amplitude might be related with different frequency bands and promoted our understanding of pathophysiological mechanism in acute BGIS.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.