Hui Jiang, Yaona Jiang, Yuanri Xu, Dong Yuan, Yaqing Li
{"title":"支气管上皮 SIRT1 缺乏会通过 FOXO3/PINK1 通路加重香烟烟雾诱发的小鼠肺气肿。","authors":"Hui Jiang, Yaona Jiang, Yuanri Xu, Dong Yuan, Yaqing Li","doi":"10.1080/01902148.2022.2037169","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> Cellular senescence and mitochondrial fragmentation are thought to be crucial components of the cigarette smoke(CS)-induced responses that contribute to the chronic obstructive pulmonary disease (COPD) development as a result of accelerated premature aging of the lung. Although there have been a few reports on the role of sirtuin 1(SIRT1) in mitochondrial homeostasis, senescence and inflammation, whether SIRT1/FOXO3/PINK1 signaling mediated mitophagy ameliorates cellular senescence in COPD is still unclear. This study aimed to ascertain whether SIRT1 regulates cellular senescence via FOXO3/PINK1-mediated mitophagy in COPD. <b>Methods</b>: To investigate the effect of CS exposure and SIRT1 deficiency on mitophagy and senescence in the lung, a SIRT1 knockout(KO) mouse model was used. Airway resistance, cellular senescence mitochondrial injury, mitophagy, cellular architecture and protein expression levels in lung tissues, from SIRT1 KO and wild-type(WT) COPD model mice exposed to CS for 6 months were examined by western blotting, histochemistry, immunofluorescence and transmission electron microscopy(TEM). <b>Results</b>: In CS exposed mice, SIRT1 deficiency exacerbated airway resistance and cellular senescence, increased FOXO3 acetylation and decreased PINK1 protein levels and attenuated mitophagy. Mechanistically, the damaging effect of SIRT1 deficiency on lung tissue was attributed to increased FOXO3 acetylation and decreased PINK1 levels, and attenuated mitophagy. In vitro, mitochondrial damage and cellular sensitivity in response to CS exposure were more severe in control cells than in cells treated with aSIRT1 activator. SIRT1 activation SIRT1 activation decreased FOXO3 acetylation and increased the protein levels of PINK1 and enhanced mitophagy. <b>Conclusion</b>: These results demonstrated that the detrimental effects of SIRT1 deficiency on cell senescence associated with insufficient mitophagy, and involved the FOXO3/PINK1 signaling pathway.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":" ","pages":"1-16"},"PeriodicalIF":1.5000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bronchial epithelial SIRT1 deficiency exacerbates cigarette smoke induced emphysema in mice through the FOXO3/PINK1 pathway.\",\"authors\":\"Hui Jiang, Yaona Jiang, Yuanri Xu, Dong Yuan, Yaqing Li\",\"doi\":\"10.1080/01902148.2022.2037169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose:</b> Cellular senescence and mitochondrial fragmentation are thought to be crucial components of the cigarette smoke(CS)-induced responses that contribute to the chronic obstructive pulmonary disease (COPD) development as a result of accelerated premature aging of the lung. Although there have been a few reports on the role of sirtuin 1(SIRT1) in mitochondrial homeostasis, senescence and inflammation, whether SIRT1/FOXO3/PINK1 signaling mediated mitophagy ameliorates cellular senescence in COPD is still unclear. This study aimed to ascertain whether SIRT1 regulates cellular senescence via FOXO3/PINK1-mediated mitophagy in COPD. <b>Methods</b>: To investigate the effect of CS exposure and SIRT1 deficiency on mitophagy and senescence in the lung, a SIRT1 knockout(KO) mouse model was used. Airway resistance, cellular senescence mitochondrial injury, mitophagy, cellular architecture and protein expression levels in lung tissues, from SIRT1 KO and wild-type(WT) COPD model mice exposed to CS for 6 months were examined by western blotting, histochemistry, immunofluorescence and transmission electron microscopy(TEM). <b>Results</b>: In CS exposed mice, SIRT1 deficiency exacerbated airway resistance and cellular senescence, increased FOXO3 acetylation and decreased PINK1 protein levels and attenuated mitophagy. Mechanistically, the damaging effect of SIRT1 deficiency on lung tissue was attributed to increased FOXO3 acetylation and decreased PINK1 levels, and attenuated mitophagy. In vitro, mitochondrial damage and cellular sensitivity in response to CS exposure were more severe in control cells than in cells treated with aSIRT1 activator. SIRT1 activation SIRT1 activation decreased FOXO3 acetylation and increased the protein levels of PINK1 and enhanced mitophagy. <b>Conclusion</b>: These results demonstrated that the detrimental effects of SIRT1 deficiency on cell senescence associated with insufficient mitophagy, and involved the FOXO3/PINK1 signaling pathway.</p>\",\"PeriodicalId\":12206,\"journal\":{\"name\":\"Experimental Lung Research\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Lung Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01902148.2022.2037169\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2022.2037169","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Bronchial epithelial SIRT1 deficiency exacerbates cigarette smoke induced emphysema in mice through the FOXO3/PINK1 pathway.
Purpose: Cellular senescence and mitochondrial fragmentation are thought to be crucial components of the cigarette smoke(CS)-induced responses that contribute to the chronic obstructive pulmonary disease (COPD) development as a result of accelerated premature aging of the lung. Although there have been a few reports on the role of sirtuin 1(SIRT1) in mitochondrial homeostasis, senescence and inflammation, whether SIRT1/FOXO3/PINK1 signaling mediated mitophagy ameliorates cellular senescence in COPD is still unclear. This study aimed to ascertain whether SIRT1 regulates cellular senescence via FOXO3/PINK1-mediated mitophagy in COPD. Methods: To investigate the effect of CS exposure and SIRT1 deficiency on mitophagy and senescence in the lung, a SIRT1 knockout(KO) mouse model was used. Airway resistance, cellular senescence mitochondrial injury, mitophagy, cellular architecture and protein expression levels in lung tissues, from SIRT1 KO and wild-type(WT) COPD model mice exposed to CS for 6 months were examined by western blotting, histochemistry, immunofluorescence and transmission electron microscopy(TEM). Results: In CS exposed mice, SIRT1 deficiency exacerbated airway resistance and cellular senescence, increased FOXO3 acetylation and decreased PINK1 protein levels and attenuated mitophagy. Mechanistically, the damaging effect of SIRT1 deficiency on lung tissue was attributed to increased FOXO3 acetylation and decreased PINK1 levels, and attenuated mitophagy. In vitro, mitochondrial damage and cellular sensitivity in response to CS exposure were more severe in control cells than in cells treated with aSIRT1 activator. SIRT1 activation SIRT1 activation decreased FOXO3 acetylation and increased the protein levels of PINK1 and enhanced mitophagy. Conclusion: These results demonstrated that the detrimental effects of SIRT1 deficiency on cell senescence associated with insufficient mitophagy, and involved the FOXO3/PINK1 signaling pathway.
期刊介绍:
Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia.
Authors can choose to publish gold open access in this journal.