基于质粒的CRISPR-Cas9系统对MDA-MB-231细胞系CD81基因靶向突变的导入效果

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-01-01 Epub Date: 2022-02-14 DOI:10.5603/FHC.a2022.0007
Kasra Arbabi Zaboli, Hossein Rahimi, Jose Thekkiniath, Amir Hossein Taromchi, Saeed Kaboli
{"title":"基于质粒的CRISPR-Cas9系统对MDA-MB-231细胞系CD81基因靶向突变的导入效果","authors":"Kasra Arbabi Zaboli,&nbsp;Hossein Rahimi,&nbsp;Jose Thekkiniath,&nbsp;Amir Hossein Taromchi,&nbsp;Saeed Kaboli","doi":"10.5603/FHC.a2022.0007","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Breast cancer has been represented a challenging issue worldwide as it is one of the major leading causes of death among women. CD81 gene, a member of the tetraspanin protein family, has been associated with the development of human cancers. Genome editing technologies, particularly the CRISPR-Cas9 system, have shown rapid progress in gene function studies. In this study, we aimed to evaluate the ability of the CRISPR-Cas9 plasmid-based system to modify specific regions of the CD81 gene in the MDA-MB-231 breast cancer cell line.</p><p><strong>Materials and methods: </strong>Using bioinformatics database search, four different single guide RNAs (sgRNAs) to target exon 3 and exon 5 of the CD81 gene were designed. The intended sgRNAs sequences were cloned into the expression plasmid pSpCas9(BB)-2A-GFP (PX458) bearing sgRNA scaffold backbone, Cas9, and EGFP coding sequences, which was confirmed by colony PCR and sequencing. Transfection efficiency was determined by fluorescence microscopy and flow cytometry analysis. Gene editing efficiency was measured qualitatively and quantitatively using the T7E1 and TIDE software, respectively.</p><p><strong>Results: </strong>Our data show that expression constructs were successfully introduced into MDA-MB-231 cells with an acceptable transfection efficiency. Two sgRNAs that were afforded to introduce significant mutations in their target regions were detected by TIDE software (p-value < 0.05). To the best of our knowledge, CD81 gene editing in these cells has been investigated for the first time in this study using the CRISPR/Cas9 technique.</p><p><strong>Conclusions: </strong>Taken together, our data show that the CRISPR-Cas9 system can change the genomic sequence in the target area of MDA-MB-231 cells. Along with previous studies, we propose forethought when using T7E1-based quantitative indel estimates, as comparing activities of multiple gRNAs with the T7E1 assay may lead to inaccurate conclusions. Instead, estimating non-homologous end-joining events (NHEJ) by Sanger sequencing and subsequent TIDE analysis is recommended.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line.\",\"authors\":\"Kasra Arbabi Zaboli,&nbsp;Hossein Rahimi,&nbsp;Jose Thekkiniath,&nbsp;Amir Hossein Taromchi,&nbsp;Saeed Kaboli\",\"doi\":\"10.5603/FHC.a2022.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Breast cancer has been represented a challenging issue worldwide as it is one of the major leading causes of death among women. CD81 gene, a member of the tetraspanin protein family, has been associated with the development of human cancers. Genome editing technologies, particularly the CRISPR-Cas9 system, have shown rapid progress in gene function studies. In this study, we aimed to evaluate the ability of the CRISPR-Cas9 plasmid-based system to modify specific regions of the CD81 gene in the MDA-MB-231 breast cancer cell line.</p><p><strong>Materials and methods: </strong>Using bioinformatics database search, four different single guide RNAs (sgRNAs) to target exon 3 and exon 5 of the CD81 gene were designed. The intended sgRNAs sequences were cloned into the expression plasmid pSpCas9(BB)-2A-GFP (PX458) bearing sgRNA scaffold backbone, Cas9, and EGFP coding sequences, which was confirmed by colony PCR and sequencing. Transfection efficiency was determined by fluorescence microscopy and flow cytometry analysis. Gene editing efficiency was measured qualitatively and quantitatively using the T7E1 and TIDE software, respectively.</p><p><strong>Results: </strong>Our data show that expression constructs were successfully introduced into MDA-MB-231 cells with an acceptable transfection efficiency. Two sgRNAs that were afforded to introduce significant mutations in their target regions were detected by TIDE software (p-value < 0.05). To the best of our knowledge, CD81 gene editing in these cells has been investigated for the first time in this study using the CRISPR/Cas9 technique.</p><p><strong>Conclusions: </strong>Taken together, our data show that the CRISPR-Cas9 system can change the genomic sequence in the target area of MDA-MB-231 cells. Along with previous studies, we propose forethought when using T7E1-based quantitative indel estimates, as comparing activities of multiple gRNAs with the T7E1 assay may lead to inaccurate conclusions. Instead, estimating non-homologous end-joining events (NHEJ) by Sanger sequencing and subsequent TIDE analysis is recommended.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5603/FHC.a2022.0007\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/FHC.a2022.0007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

导言:乳腺癌在世界范围内一直是一个具有挑战性的问题,因为它是妇女死亡的主要原因之一。CD81基因是四联蛋白家族的一员,与人类癌症的发展有关。基因组编辑技术,特别是CRISPR-Cas9系统,在基因功能研究方面取得了快速进展。在这项研究中,我们旨在评估基于CRISPR-Cas9质粒的系统在MDA-MB-231乳腺癌细胞系中修饰CD81基因特定区域的能力。材料和方法:利用生物信息学数据库检索,设计4种不同的靶向CD81基因外显子3和5的单导rna (single guide rna, sgRNAs)。将拟克隆的sgRNAs序列克隆到携带sgRNA支架骨架、Cas9和EGFP编码序列的表达质粒pSpCas9(BB)-2A-GFP (PX458)中,并进行集落PCR和测序验证。采用荧光显微镜和流式细胞术检测转染效率。分别使用T7E1和TIDE软件对基因编辑效率进行定性和定量测量。结果:我们的数据显示,表达构建体成功导入MDA-MB-231细胞,转染效率可接受。通过TIDE软件检测到两个能够在其靶区引入显著突变的sgrna (p值< 0.05)。据我们所知,本研究首次使用CRISPR/Cas9技术对这些细胞中的CD81基因编辑进行了研究。综上所述,我们的数据表明CRISPR-Cas9系统可以改变MDA-MB-231细胞靶区的基因组序列。与之前的研究一样,我们建议在使用基于T7E1的定量indel估计时要深思熟虑,因为将多个grna的活性与T7E1分析进行比较可能会导致不准确的结论。相反,建议通过Sanger测序和随后的TIDE分析来估计非同源末端连接事件(NHEJ)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line.

Introduction: Breast cancer has been represented a challenging issue worldwide as it is one of the major leading causes of death among women. CD81 gene, a member of the tetraspanin protein family, has been associated with the development of human cancers. Genome editing technologies, particularly the CRISPR-Cas9 system, have shown rapid progress in gene function studies. In this study, we aimed to evaluate the ability of the CRISPR-Cas9 plasmid-based system to modify specific regions of the CD81 gene in the MDA-MB-231 breast cancer cell line.

Materials and methods: Using bioinformatics database search, four different single guide RNAs (sgRNAs) to target exon 3 and exon 5 of the CD81 gene were designed. The intended sgRNAs sequences were cloned into the expression plasmid pSpCas9(BB)-2A-GFP (PX458) bearing sgRNA scaffold backbone, Cas9, and EGFP coding sequences, which was confirmed by colony PCR and sequencing. Transfection efficiency was determined by fluorescence microscopy and flow cytometry analysis. Gene editing efficiency was measured qualitatively and quantitatively using the T7E1 and TIDE software, respectively.

Results: Our data show that expression constructs were successfully introduced into MDA-MB-231 cells with an acceptable transfection efficiency. Two sgRNAs that were afforded to introduce significant mutations in their target regions were detected by TIDE software (p-value < 0.05). To the best of our knowledge, CD81 gene editing in these cells has been investigated for the first time in this study using the CRISPR/Cas9 technique.

Conclusions: Taken together, our data show that the CRISPR-Cas9 system can change the genomic sequence in the target area of MDA-MB-231 cells. Along with previous studies, we propose forethought when using T7E1-based quantitative indel estimates, as comparing activities of multiple gRNAs with the T7E1 assay may lead to inaccurate conclusions. Instead, estimating non-homologous end-joining events (NHEJ) by Sanger sequencing and subsequent TIDE analysis is recommended.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1