佛手柑素通过诱导SIRT1、抑制NF-κB减轻lps诱导的急性肺损伤。

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Innate Immunity Pub Date : 2021-10-01 Epub Date: 2021-11-23 DOI:10.1177/17534259211062553
Ning An, Tao Yang, Xiao-Xia Zhang, Mei-Xia Xu
{"title":"佛手柑素通过诱导SIRT1、抑制NF-κB减轻lps诱导的急性肺损伤。","authors":"Ning An,&nbsp;Tao Yang,&nbsp;Xiao-Xia Zhang,&nbsp;Mei-Xia Xu","doi":"10.1177/17534259211062553","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) is associated with a high mortality due to inflammatory cell infiltration and lung edema. The development of ALI commonly involves the activation of NF-κB. Since bergamottin is a natural furanocoumarin showing the ability to inhibit the activation of NF-κB, in this study we aimed to determine the effect of bergamottin on ALI. RAW264.7 mouse macrophages were pre-treated with bergamottin and then stimulated with LPS. Macrophage inflammatory responses were examined. Bergamottin (50 mg/kg body mass) was intraperitoneally administrated to mice 12 h before injection of LPS, and the effect of bergamottin on LPS-induced ALI was evaluated. Our results showed that LPS exposure led to increased production of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which was impaired by bergamottin pre-treatment. <i>In vivo</i> studies confirmed that bergamottin pre-treatment suppressed LPS-induced lung inflammation and edema and reduced the levels of pro-inflammatory cytokines in lung tissues and bronchoalveolar lavage fluids. Mechanistically, bergamottin blocked LPS-induced activation of NF-κB signaling in lung tissues. Additionally, bergamottin treatment reduced NF-κB p65 protein acetylation, which was coupled with induction of SIRT1 expression. In conclusion, our results reveal the anti-inflammatory property of bergamottin in preventing ALI. Induction of SIRT1 and inhibition of NF-κB underlies the anti-inflammatory activity of bergamottin.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/de/f6/10.1177_17534259211062553.PMC8762093.pdf","citationCount":"6","resultStr":"{\"title\":\"Bergamottin alleviates LPS-induced acute lung injury by inducing SIRT1 and suppressing NF-κB.\",\"authors\":\"Ning An,&nbsp;Tao Yang,&nbsp;Xiao-Xia Zhang,&nbsp;Mei-Xia Xu\",\"doi\":\"10.1177/17534259211062553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute lung injury (ALI) is associated with a high mortality due to inflammatory cell infiltration and lung edema. The development of ALI commonly involves the activation of NF-κB. Since bergamottin is a natural furanocoumarin showing the ability to inhibit the activation of NF-κB, in this study we aimed to determine the effect of bergamottin on ALI. RAW264.7 mouse macrophages were pre-treated with bergamottin and then stimulated with LPS. Macrophage inflammatory responses were examined. Bergamottin (50 mg/kg body mass) was intraperitoneally administrated to mice 12 h before injection of LPS, and the effect of bergamottin on LPS-induced ALI was evaluated. Our results showed that LPS exposure led to increased production of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which was impaired by bergamottin pre-treatment. <i>In vivo</i> studies confirmed that bergamottin pre-treatment suppressed LPS-induced lung inflammation and edema and reduced the levels of pro-inflammatory cytokines in lung tissues and bronchoalveolar lavage fluids. Mechanistically, bergamottin blocked LPS-induced activation of NF-κB signaling in lung tissues. Additionally, bergamottin treatment reduced NF-κB p65 protein acetylation, which was coupled with induction of SIRT1 expression. In conclusion, our results reveal the anti-inflammatory property of bergamottin in preventing ALI. Induction of SIRT1 and inhibition of NF-κB underlies the anti-inflammatory activity of bergamottin.</p>\",\"PeriodicalId\":13676,\"journal\":{\"name\":\"Innate Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/de/f6/10.1177_17534259211062553.PMC8762093.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innate Immunity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/17534259211062553\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259211062553","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

急性肺损伤(ALI)是由炎症细胞浸润和肺水肿引起的高死亡率。ALI的发生通常与NF-κB的活化有关。由于佛手柑素是一种天然呋喃香豆素,具有抑制NF-κB活化的能力,因此本研究旨在确定佛手柑素对ALI的影响。用佛手柑素预处理RAW264.7小鼠巨噬细胞,然后用LPS刺激。观察巨噬细胞炎症反应。在LPS注射前12 h腹腔注射佛手柑素(50 mg/kg体质量),观察佛手柑素对LPS诱导的ALI的影响。我们的研究结果表明,LPS暴露导致TNF-α、IL-6和单核细胞化学引诱蛋白-1 (MCP-1)的产生增加,而佛手柑素预处理会损害MCP-1。体内研究证实佛手柑素预处理可抑制lps诱导的肺部炎症和水肿,并降低肺组织和支气管肺泡灌洗液中促炎细胞因子的水平。在机制上,佛手柑素阻断了lps诱导的肺组织NF-κB信号的激活。此外,佛手柑素处理降低了NF-κB p65蛋白乙酰化,这与诱导SIRT1表达相结合。总之,我们的研究结果揭示了佛手柑素在预防ALI中的抗炎作用。佛手柑素的抗炎活性是诱导SIRT1和抑制NF-κB的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bergamottin alleviates LPS-induced acute lung injury by inducing SIRT1 and suppressing NF-κB.

Acute lung injury (ALI) is associated with a high mortality due to inflammatory cell infiltration and lung edema. The development of ALI commonly involves the activation of NF-κB. Since bergamottin is a natural furanocoumarin showing the ability to inhibit the activation of NF-κB, in this study we aimed to determine the effect of bergamottin on ALI. RAW264.7 mouse macrophages were pre-treated with bergamottin and then stimulated with LPS. Macrophage inflammatory responses were examined. Bergamottin (50 mg/kg body mass) was intraperitoneally administrated to mice 12 h before injection of LPS, and the effect of bergamottin on LPS-induced ALI was evaluated. Our results showed that LPS exposure led to increased production of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which was impaired by bergamottin pre-treatment. In vivo studies confirmed that bergamottin pre-treatment suppressed LPS-induced lung inflammation and edema and reduced the levels of pro-inflammatory cytokines in lung tissues and bronchoalveolar lavage fluids. Mechanistically, bergamottin blocked LPS-induced activation of NF-κB signaling in lung tissues. Additionally, bergamottin treatment reduced NF-κB p65 protein acetylation, which was coupled with induction of SIRT1 expression. In conclusion, our results reveal the anti-inflammatory property of bergamottin in preventing ALI. Induction of SIRT1 and inhibition of NF-κB underlies the anti-inflammatory activity of bergamottin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Innate Immunity
Innate Immunity 生物-免疫学
CiteScore
7.20
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.
期刊最新文献
Innate lymphoid cells and infectious diseases. Selective IgG binding to the LPS glycolipid core found in bovine colostrum, or milk, during Escherichia coli mastitis influences endotoxin function The in vitro effect of myeloperoxidase oxidized LDL on THP-1 derived macrophages. A pilot study of monocytes in relapsing remitting multiple sclerosis: Correlation with disease activity. CRISPR activation as a platform to identify interferon stimulated genes with anti-viral function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1