氧化应激的代际代价:在繁殖过程中经历高水平氧化损伤的母亲的女儿的健康水平降低。

IF 1.8 3区 生物学 Q3 PHYSIOLOGY Physiological and Biochemical Zoology Pub Date : 2022-01-01 DOI:10.1086/717614
Ana Ángela Romero-Haro, Lorenzo Pérez-Rodríguez, Barbara Tschirren
{"title":"氧化应激的代际代价:在繁殖过程中经历高水平氧化损伤的母亲的女儿的健康水平降低。","authors":"Ana Ángela Romero-Haro,&nbsp;Lorenzo Pérez-Rodríguez,&nbsp;Barbara Tschirren","doi":"10.1086/717614","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractParental condition transfer effects occur when the parents' physiological state during reproduction affects offspring performance. Oxidative damage may mediate such effects, yet evidence that oxidative damage experienced by parents during reproduction negatively affects offspring fitness is scarce and limited to early life stages. We show in Japanese quail (<i>Coturnix japonica</i>) that maternal levels of oxidative damage, measured during reproduction, negatively predict the number of offspring produced by daughters. This maternal effect on daughters' reproductive success was mediated by an effect on hatching success rather than on the number of eggs laid by daughters. We also observed a negative association between fathers' oxidative damage levels and the number of eggs laid by daughters but a positive association between fathers' oxidative damage levels and the hatching success of those eggs. These opposing paternal effects canceled each other out, resulting in no overall effect on the number of offspring produced by daughters. No significant association between a female's own level of oxidative damage during reproduction and her reproductive success was observed. Our results suggest that oxidative damage experienced by parents is a better predictor of an individual's reproductive performance than oxidative damage experienced by the individual itself. Although the mechanisms underlying these parental condition transfer effects are currently unknown, changes in egg composition or (epi)genetic alterations of gametes may play a role. These findings highlight the importance of an intergenerational perspective when quantifying costs of physiological stress.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"95 1","pages":"1-14"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intergenerational Costs of Oxidative Stress: Reduced Fitness in Daughters of Mothers That Experienced High Levels of Oxidative Damage during Reproduction.\",\"authors\":\"Ana Ángela Romero-Haro,&nbsp;Lorenzo Pérez-Rodríguez,&nbsp;Barbara Tschirren\",\"doi\":\"10.1086/717614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractParental condition transfer effects occur when the parents' physiological state during reproduction affects offspring performance. Oxidative damage may mediate such effects, yet evidence that oxidative damage experienced by parents during reproduction negatively affects offspring fitness is scarce and limited to early life stages. We show in Japanese quail (<i>Coturnix japonica</i>) that maternal levels of oxidative damage, measured during reproduction, negatively predict the number of offspring produced by daughters. This maternal effect on daughters' reproductive success was mediated by an effect on hatching success rather than on the number of eggs laid by daughters. We also observed a negative association between fathers' oxidative damage levels and the number of eggs laid by daughters but a positive association between fathers' oxidative damage levels and the hatching success of those eggs. These opposing paternal effects canceled each other out, resulting in no overall effect on the number of offspring produced by daughters. No significant association between a female's own level of oxidative damage during reproduction and her reproductive success was observed. Our results suggest that oxidative damage experienced by parents is a better predictor of an individual's reproductive performance than oxidative damage experienced by the individual itself. Although the mechanisms underlying these parental condition transfer effects are currently unknown, changes in egg composition or (epi)genetic alterations of gametes may play a role. These findings highlight the importance of an intergenerational perspective when quantifying costs of physiological stress.</p>\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\"95 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/717614\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/717614","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

摘要亲本状态转移效应是指亲本在生殖过程中的生理状态影响后代的表现。氧化损伤可能介导了这种影响,但证据表明,父母在繁殖过程中经历的氧化损伤对后代的健康有负面影响,而且仅限于生命早期阶段。我们在日本鹌鹑(Coturnix japonica)中发现,在繁殖过程中测量的母体氧化损伤水平与雌性后代的数量呈负相关。这种母性对雌性繁殖成功的影响是通过对孵化成功的影响而不是对雌性产卵数量的影响来调节的。我们还观察到父亲的氧化损伤水平与女儿产卵的数量呈负相关,但父亲的氧化损伤水平与这些卵的孵化成功率呈正相关。这些相反的父亲影响相互抵消,导致对女儿产生的后代数量没有总体影响。雌性在繁殖过程中自身的氧化损伤水平与繁殖成功之间没有明显的联系。我们的研究结果表明,父母经历的氧化损伤比个体自身经历的氧化损伤更能预测个体的生殖表现。虽然这些亲本条件转移效应的机制目前尚不清楚,但卵子成分的变化或配子的遗传改变可能起作用。这些发现强调了在量化生理压力成本时,代际视角的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intergenerational Costs of Oxidative Stress: Reduced Fitness in Daughters of Mothers That Experienced High Levels of Oxidative Damage during Reproduction.

AbstractParental condition transfer effects occur when the parents' physiological state during reproduction affects offspring performance. Oxidative damage may mediate such effects, yet evidence that oxidative damage experienced by parents during reproduction negatively affects offspring fitness is scarce and limited to early life stages. We show in Japanese quail (Coturnix japonica) that maternal levels of oxidative damage, measured during reproduction, negatively predict the number of offspring produced by daughters. This maternal effect on daughters' reproductive success was mediated by an effect on hatching success rather than on the number of eggs laid by daughters. We also observed a negative association between fathers' oxidative damage levels and the number of eggs laid by daughters but a positive association between fathers' oxidative damage levels and the hatching success of those eggs. These opposing paternal effects canceled each other out, resulting in no overall effect on the number of offspring produced by daughters. No significant association between a female's own level of oxidative damage during reproduction and her reproductive success was observed. Our results suggest that oxidative damage experienced by parents is a better predictor of an individual's reproductive performance than oxidative damage experienced by the individual itself. Although the mechanisms underlying these parental condition transfer effects are currently unknown, changes in egg composition or (epi)genetic alterations of gametes may play a role. These findings highlight the importance of an intergenerational perspective when quantifying costs of physiological stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
6.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context. Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.
期刊最新文献
IGF-1 Levels Increase during an Immune but Not an Oxidative Challenge in an Avian Model, the Japanese Quail Infection Causes Trade-Offs between Development and Growth in Larval Amphibians. Announcement: Physiological and Biochemical Zoology Is Changing Its Name to Ecological and Evolutionary Physiology. Environmental stress and the morphology of Daphnia pulex The rate of cooling during torpor entry drives torpor patterns in a small marsupial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1