医疗保健工业4.0中群体决策方法的调查:文献计量学、应用和方向

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2022-01-05 DOI:10.1007/s10489-021-02909-y
Keyu Lu, Huchang Liao
{"title":"医疗保健工业4.0中群体决策方法的调查:文献计量学、应用和方向","authors":"Keyu Lu,&nbsp;Huchang Liao","doi":"10.1007/s10489-021-02909-y","DOIUrl":null,"url":null,"abstract":"<div><p>Healthcare Industry 4.0 refers to intelligent operation processes in the medical industry. With the development of information technology, large-scale group decision making (GDM), which allows a larger number of decision makers (DMs) from different places or sectors to participate in decision making, has been rapidly developed and applied in Healthcare Industry 4.0 to help to make decisions efficiently and smartly. To make full use of GDM methods to promote the developments of the medical industry, it is necessary to review the existing relevant achievements. Therefore, this paper conducts an overview to generate a comprehensive understanding of GDM in Healthcare Industry 4.0 and to identify future development directions. Bibliometric analyses are conducted in order to learn the development trends from published papers. The implementations of GDM methods in Healthcare Industry 4.0 are reviewed in accordance with the paradigm of the general GDM process, which includes information representation, dimension reduction, consensus reaching, and result elicitation. We also provide current research challenges and future directions regarding medical GDM. It is hoped that our study will be helpful for researchers in the field of GDM in Healthcare Industry 4.0.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"52 12","pages":"13689 - 13713"},"PeriodicalIF":3.4000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-021-02909-y.pdf","citationCount":"10","resultStr":"{\"title\":\"A survey of group decision making methods in Healthcare Industry 4.0: bibliometrics, applications, and directions\",\"authors\":\"Keyu Lu,&nbsp;Huchang Liao\",\"doi\":\"10.1007/s10489-021-02909-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Healthcare Industry 4.0 refers to intelligent operation processes in the medical industry. With the development of information technology, large-scale group decision making (GDM), which allows a larger number of decision makers (DMs) from different places or sectors to participate in decision making, has been rapidly developed and applied in Healthcare Industry 4.0 to help to make decisions efficiently and smartly. To make full use of GDM methods to promote the developments of the medical industry, it is necessary to review the existing relevant achievements. Therefore, this paper conducts an overview to generate a comprehensive understanding of GDM in Healthcare Industry 4.0 and to identify future development directions. Bibliometric analyses are conducted in order to learn the development trends from published papers. The implementations of GDM methods in Healthcare Industry 4.0 are reviewed in accordance with the paradigm of the general GDM process, which includes information representation, dimension reduction, consensus reaching, and result elicitation. We also provide current research challenges and future directions regarding medical GDM. It is hoped that our study will be helpful for researchers in the field of GDM in Healthcare Industry 4.0.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"52 12\",\"pages\":\"13689 - 13713\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-021-02909-y.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-021-02909-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-021-02909-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10

摘要

医疗行业4.0是指医疗行业的智能化操作流程。随着信息技术的发展,大规模群体决策(GDM)得到了快速发展,并在医疗保健工业4.0中得到了应用,它允许来自不同地方或部门的大量决策者参与决策,以帮助高效、智能地做出决策。为了充分利用GDM方法促进医疗行业的发展,有必要回顾现有的相关成果。因此,本文进行了概述,以全面了解医疗保健工业4.0中的GDM,并确定未来的发展方向。文献计量分析是为了从已发表的论文中了解发展趋势。根据通用GDM过程的范式,回顾了医疗保健工业4.0中GDM方法的实施,包括信息表示、降维、达成共识和结果引出。我们还提供了有关医学GDM的当前研究挑战和未来方向。希望我们的研究对医疗保健工业4.0中GDM领域的研究人员有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey of group decision making methods in Healthcare Industry 4.0: bibliometrics, applications, and directions

Healthcare Industry 4.0 refers to intelligent operation processes in the medical industry. With the development of information technology, large-scale group decision making (GDM), which allows a larger number of decision makers (DMs) from different places or sectors to participate in decision making, has been rapidly developed and applied in Healthcare Industry 4.0 to help to make decisions efficiently and smartly. To make full use of GDM methods to promote the developments of the medical industry, it is necessary to review the existing relevant achievements. Therefore, this paper conducts an overview to generate a comprehensive understanding of GDM in Healthcare Industry 4.0 and to identify future development directions. Bibliometric analyses are conducted in order to learn the development trends from published papers. The implementations of GDM methods in Healthcare Industry 4.0 are reviewed in accordance with the paradigm of the general GDM process, which includes information representation, dimension reduction, consensus reaching, and result elicitation. We also provide current research challenges and future directions regarding medical GDM. It is hoped that our study will be helpful for researchers in the field of GDM in Healthcare Industry 4.0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
A multi-relational neighbors constructed graph neural network for heterophily graph learning PVT-MA: pyramid vision transformers with multi-attention fusion mechanism for polyp segmentation ST-NAMN: a spatial-temporal nonlinear auto-regressive multichannel neural network for traffic prediction Detrended partial cross-correlation analysis-random matrix theory for denoising network construction Machine learning for automation usage prediction: identifying critical factors in driver decision-making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1