表观基因组是否有助于癌症发病的风险分层?

NAR Cancer Pub Date : 2021-11-01 eCollection Date: 2021-12-01 DOI:10.1093/narcan/zcab043
Sophie A Lelièvre
{"title":"表观基因组是否有助于癌症发病的风险分层?","authors":"Sophie A Lelièvre","doi":"10.1093/narcan/zcab043","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing burden of cancer requires identifying and protecting individuals at highest risk. The epigenome provides an indispensable complement to genetic alterations for a risk stratification approach for the following reasons: gene transcription necessary for cancer onset is directed by epigenetic modifications and many risk factors studied so far have been associated with alterations related to the epigenome. The risk level depends on the plasticity of the epigenome during phases of life particularly sensitive to environmental and dietary impacts. Modifications in the activity of DNA regulatory regions and altered chromatin compaction may accumulate, hence leading to the increase of cancer risk. Moreover, tissue architecture directs the unique organization of the epigenome for each tissue and cell type, which allows the epigenome to control cancer risk in specific organs. Investigations of epigenetic signatures of risk should help identify a continuum of alterations leading to a threshold beyond which the epigenome cannot maintain homeostasis. We propose that this threshold may be similar in the population for a given tissue, but the pace to reach this threshold will depend on the combination of germline inheritance and the risk and protective factors encountered, particularly during windows of epigenetic susceptibility, by individuals.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/d4/zcab043.PMC8559165.pdf","citationCount":"3","resultStr":"{\"title\":\"Can the epigenome contribute to risk stratification for cancer onset?\",\"authors\":\"Sophie A Lelièvre\",\"doi\":\"10.1093/narcan/zcab043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing burden of cancer requires identifying and protecting individuals at highest risk. The epigenome provides an indispensable complement to genetic alterations for a risk stratification approach for the following reasons: gene transcription necessary for cancer onset is directed by epigenetic modifications and many risk factors studied so far have been associated with alterations related to the epigenome. The risk level depends on the plasticity of the epigenome during phases of life particularly sensitive to environmental and dietary impacts. Modifications in the activity of DNA regulatory regions and altered chromatin compaction may accumulate, hence leading to the increase of cancer risk. Moreover, tissue architecture directs the unique organization of the epigenome for each tissue and cell type, which allows the epigenome to control cancer risk in specific organs. Investigations of epigenetic signatures of risk should help identify a continuum of alterations leading to a threshold beyond which the epigenome cannot maintain homeostasis. We propose that this threshold may be similar in the population for a given tissue, but the pace to reach this threshold will depend on the combination of germline inheritance and the risk and protective factors encountered, particularly during windows of epigenetic susceptibility, by individuals.</p>\",\"PeriodicalId\":18879,\"journal\":{\"name\":\"NAR Cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/d4/zcab043.PMC8559165.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/narcan/zcab043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcab043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

日益增加的癌症负担要求识别和保护高危人群。由于以下原因,表观基因组为风险分层方法的遗传改变提供了不可或缺的补充:癌症发病所需的基因转录是由表观遗传修饰指导的,迄今为止研究的许多危险因素都与表观基因组相关的改变有关。风险水平取决于对环境和饮食影响特别敏感的生命阶段表观基因组的可塑性。DNA调控区活性的改变和染色质压实的改变可能会累积,从而导致癌症风险的增加。此外,组织结构指导着每一种组织和细胞类型的表观基因组的独特组织,这使得表观基因组能够控制特定器官的癌症风险。对风险的表观遗传特征的研究应该有助于确定导致表观基因组无法维持稳态的阈值的连续变化。我们认为这个阈值可能在群体中与给定组织相似,但达到这个阈值的速度将取决于种系遗传和遇到的风险和保护因素的组合,特别是在个体的表观遗传易感性窗口期间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can the epigenome contribute to risk stratification for cancer onset?

The increasing burden of cancer requires identifying and protecting individuals at highest risk. The epigenome provides an indispensable complement to genetic alterations for a risk stratification approach for the following reasons: gene transcription necessary for cancer onset is directed by epigenetic modifications and many risk factors studied so far have been associated with alterations related to the epigenome. The risk level depends on the plasticity of the epigenome during phases of life particularly sensitive to environmental and dietary impacts. Modifications in the activity of DNA regulatory regions and altered chromatin compaction may accumulate, hence leading to the increase of cancer risk. Moreover, tissue architecture directs the unique organization of the epigenome for each tissue and cell type, which allows the epigenome to control cancer risk in specific organs. Investigations of epigenetic signatures of risk should help identify a continuum of alterations leading to a threshold beyond which the epigenome cannot maintain homeostasis. We propose that this threshold may be similar in the population for a given tissue, but the pace to reach this threshold will depend on the combination of germline inheritance and the risk and protective factors encountered, particularly during windows of epigenetic susceptibility, by individuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pan-cancer analysis of promoter activity quantitative trait loci Large-scale phenogenomic analysis of human cancers uncovers frequent alterations affecting SMC5/6 complex components in breast cancer. Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells. CDK2 regulates collapsed replication fork repair in CCNE1-amplified ovarian cancer cells via homologous recombination. Editorial: DNA repair and nucleic acid therapeutics in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1