{"title":"精神分裂症患者白质微结构与智力下降的相关性研究。","authors":"Junya Matsumoto, Kenichiro Miura, Masaki Fukunaga, Kiyotaka Nemoto, Daisuke Koshiyama, Naohiro Okada, Kentaro Morita, Hidenaga Yamamori, Yuka Yasuda, Michiko Fujimoto, Satsuki Ito, Naomi Hasegawa, Yoshiyuki Watanabe, Kiyoto Kasai, Ryota Hashimoto","doi":"10.1177/15500594211063314","DOIUrl":null,"url":null,"abstract":"Patients with schizophrenia can exhibit intelligence decline, which is an important element of cognitive impairment. Previous magnetic resonance imaging (MRI) studies have demonstrated that patients with schizophrenia have altered gray matter structures and functional connectivity associated with intelligence decline defined by a difference between premorbid and current intelligence quotients (IQs). However, it has remained unclear whether white matter microstructures are related to intelligence decline. In the present study, the indices of diffusion tensor imaging (DTI) obtained from 138 patients with schizophrenia and 554 healthy controls were analyzed. The patients were classified into three subgroups based on intelligence decline: deteriorated (94 patients), preserved (42 patients), and compromised IQ (2 patients) groups. Given that the DTI of each subject was acquired using either one of two different MRI scanners, we analyzed DTI indices separately for each scanner group. In the comparison between the deteriorated IQ group and the healthy controls, differences in some DTI indices were noted in three regions of interest irrespective of the MRI scanners, whereas differences in only one region of interest were noted between the preserved IQ group and the healthy controls. However, the comparisons between the deteriorated and preserved IQ groups did not show any reproducible differences. Together with the previous findings, it is thought that gray matter structures and functional connectivity are more promising as markers of intelligence decline in schizophrenia than white matter microstructures.","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":" ","pages":"567-573"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Association Study Between White Matter Microstructure and Intelligence Decline in Schizophrenia.\",\"authors\":\"Junya Matsumoto, Kenichiro Miura, Masaki Fukunaga, Kiyotaka Nemoto, Daisuke Koshiyama, Naohiro Okada, Kentaro Morita, Hidenaga Yamamori, Yuka Yasuda, Michiko Fujimoto, Satsuki Ito, Naomi Hasegawa, Yoshiyuki Watanabe, Kiyoto Kasai, Ryota Hashimoto\",\"doi\":\"10.1177/15500594211063314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patients with schizophrenia can exhibit intelligence decline, which is an important element of cognitive impairment. Previous magnetic resonance imaging (MRI) studies have demonstrated that patients with schizophrenia have altered gray matter structures and functional connectivity associated with intelligence decline defined by a difference between premorbid and current intelligence quotients (IQs). However, it has remained unclear whether white matter microstructures are related to intelligence decline. In the present study, the indices of diffusion tensor imaging (DTI) obtained from 138 patients with schizophrenia and 554 healthy controls were analyzed. The patients were classified into three subgroups based on intelligence decline: deteriorated (94 patients), preserved (42 patients), and compromised IQ (2 patients) groups. Given that the DTI of each subject was acquired using either one of two different MRI scanners, we analyzed DTI indices separately for each scanner group. In the comparison between the deteriorated IQ group and the healthy controls, differences in some DTI indices were noted in three regions of interest irrespective of the MRI scanners, whereas differences in only one region of interest were noted between the preserved IQ group and the healthy controls. However, the comparisons between the deteriorated and preserved IQ groups did not show any reproducible differences. Together with the previous findings, it is thought that gray matter structures and functional connectivity are more promising as markers of intelligence decline in schizophrenia than white matter microstructures.\",\"PeriodicalId\":10682,\"journal\":{\"name\":\"Clinical EEG and Neuroscience\",\"volume\":\" \",\"pages\":\"567-573\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594211063314\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594211063314","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Association Study Between White Matter Microstructure and Intelligence Decline in Schizophrenia.
Patients with schizophrenia can exhibit intelligence decline, which is an important element of cognitive impairment. Previous magnetic resonance imaging (MRI) studies have demonstrated that patients with schizophrenia have altered gray matter structures and functional connectivity associated with intelligence decline defined by a difference between premorbid and current intelligence quotients (IQs). However, it has remained unclear whether white matter microstructures are related to intelligence decline. In the present study, the indices of diffusion tensor imaging (DTI) obtained from 138 patients with schizophrenia and 554 healthy controls were analyzed. The patients were classified into three subgroups based on intelligence decline: deteriorated (94 patients), preserved (42 patients), and compromised IQ (2 patients) groups. Given that the DTI of each subject was acquired using either one of two different MRI scanners, we analyzed DTI indices separately for each scanner group. In the comparison between the deteriorated IQ group and the healthy controls, differences in some DTI indices were noted in three regions of interest irrespective of the MRI scanners, whereas differences in only one region of interest were noted between the preserved IQ group and the healthy controls. However, the comparisons between the deteriorated and preserved IQ groups did not show any reproducible differences. Together with the previous findings, it is thought that gray matter structures and functional connectivity are more promising as markers of intelligence decline in schizophrenia than white matter microstructures.
期刊介绍:
Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.