脑软化液衰减反转恢复(FLAIR)高强度病变外伤性癫痫的实验影像学研究。

IF 3 4区 医学 Q2 NEUROSCIENCES Neural Plasticity Pub Date : 2021-10-31 eCollection Date: 2021-01-01 DOI:10.1155/2021/2678379
Dan Wang, Kai Shang, Zheng Sun, Yue-Hua Li
{"title":"脑软化液衰减反转恢复(FLAIR)高强度病变外伤性癫痫的实验影像学研究。","authors":"Dan Wang,&nbsp;Kai Shang,&nbsp;Zheng Sun,&nbsp;Yue-Hua Li","doi":"10.1155/2021/2678379","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduced new MRI techniques such as neurite orientation dispersion and density imaging (NODDI); NODDI applies a three-compartment tissue model to multishell DWI data that allows the examination of both the intra- and extracellular properties of white matter tissue. This, in turn, enables us to distinguish the two key aspects of axonal pathology-the packing density of axons in the white matter and the spatial organization of axons (orientation dispersion (OD)). NODDI is used to detect possible abnormalities of posttraumatic encephalomalacia fluid-attenuated inversion recovery (FLAIR) hyperintense lesions in neurite density and dispersion. <i>Methods</i>. 26 epilepsy patients associated with FLAIR hyperintensity around the trauma encephalomalacia region were in the epilepsy group. 18 posttraumatic patients with a FLAIR hyperintense encephalomalacia region were in the nonepilepsy group. Neurite density and dispersion affection in FLAIR hyperintense lesions around encephalomalacia were measured by NODDI using intracellular volume fraction (ICVF), and we compare these findings with conventional diffusion MRI parameters, namely, fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Differences were compared between the epilepsy and nonepilepsy groups, as well as in the FLAIR hyperintense part and in the FLAIR hypointense part to try to find neurite density and dispersion differences in these parts. <i>Results</i>. ICVF of FLAIR hyperintense lesions in the epilepsy group was significantly higher than that in the nonepilepsy group (<i>P</i> < 0.001). ICVF reveals more information of FLAIR(+) and FLAIR(-) parts of encephalomalacia than OD and FA and ADC. <i>Conclusion</i>. The FLAIR hyperintense part around encephalomalacia in the epilepsy group showed higher ICVF, indicating that this part may have more neurite density and dispersion and may be contributing to epilepsy. NODDI indicated high neurite density with the intensity of myelin in the FLAIR hyperintense lesion. Therefore, NODDI likely shows that neurite density may be a more sensitive marker of pathology than FA.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572636/pdf/","citationCount":"2","resultStr":"{\"title\":\"Experimental Imaging Study of Encephalomalacia Fluid-Attenuated Inversion Recovery (FLAIR) Hyperintense Lesions in Posttraumatic Epilepsy.\",\"authors\":\"Dan Wang,&nbsp;Kai Shang,&nbsp;Zheng Sun,&nbsp;Yue-Hua Li\",\"doi\":\"10.1155/2021/2678379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduced new MRI techniques such as neurite orientation dispersion and density imaging (NODDI); NODDI applies a three-compartment tissue model to multishell DWI data that allows the examination of both the intra- and extracellular properties of white matter tissue. This, in turn, enables us to distinguish the two key aspects of axonal pathology-the packing density of axons in the white matter and the spatial organization of axons (orientation dispersion (OD)). NODDI is used to detect possible abnormalities of posttraumatic encephalomalacia fluid-attenuated inversion recovery (FLAIR) hyperintense lesions in neurite density and dispersion. <i>Methods</i>. 26 epilepsy patients associated with FLAIR hyperintensity around the trauma encephalomalacia region were in the epilepsy group. 18 posttraumatic patients with a FLAIR hyperintense encephalomalacia region were in the nonepilepsy group. Neurite density and dispersion affection in FLAIR hyperintense lesions around encephalomalacia were measured by NODDI using intracellular volume fraction (ICVF), and we compare these findings with conventional diffusion MRI parameters, namely, fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Differences were compared between the epilepsy and nonepilepsy groups, as well as in the FLAIR hyperintense part and in the FLAIR hypointense part to try to find neurite density and dispersion differences in these parts. <i>Results</i>. ICVF of FLAIR hyperintense lesions in the epilepsy group was significantly higher than that in the nonepilepsy group (<i>P</i> < 0.001). ICVF reveals more information of FLAIR(+) and FLAIR(-) parts of encephalomalacia than OD and FA and ADC. <i>Conclusion</i>. The FLAIR hyperintense part around encephalomalacia in the epilepsy group showed higher ICVF, indicating that this part may have more neurite density and dispersion and may be contributing to epilepsy. NODDI indicated high neurite density with the intensity of myelin in the FLAIR hyperintense lesion. Therefore, NODDI likely shows that neurite density may be a more sensitive marker of pathology than FA.</p>\",\"PeriodicalId\":51299,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572636/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/2678379\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2021/2678379","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

本研究介绍了新的MRI技术,如神经突取向弥散和密度成像(NODDI);NODDI将三室组织模型应用于多壳DWI数据,可以检查白质组织的细胞内和细胞外特性。反过来,这使我们能够区分轴突病理的两个关键方面-轴突在白质中的堆积密度和轴突的空间组织(取向分散(OD))。NODDI用于检测创伤后脑软化症液体衰减反转恢复(FLAIR)高强度病变在神经突密度和弥散度方面的可能异常。方法:将26例伴有创伤性脑软化区FLAIR高信号的癫痫患者作为癫痫组。18例创伤后FLAIR高强度脑软化区患者为非癫痫组。脑软化症周围FLAIR高病变的神经突密度和弥散度影响采用NODDI测量细胞内体积分数(ICVF),并与常规弥散MRI参数,即分数各向异性(FA)和表观弥散系数(ADC)进行比较。比较癫痫组与非癫痫组的差异,以及FLAIR高信号部分与FLAIR低信号部分的差异,试图找出这些部分的神经突密度和弥散度差异。结果。癫痫组FLAIR高病变ICVF显著高于非癫痫组(P < 0.001)。ICVF比OD、FA和ADC更能显示脑软化的FLAIR(+)和FLAIR(-)部位的信息。结论。癫痫组脑软化周围FLAIR高信号区ICVF较高,提示该部位神经突密度和弥散度较高,可能与癫痫有关。NODDI显示FLAIR高信号病变的神经突密度高,髓磷脂强度高。因此,NODDI可能表明神经突密度可能是比FA更敏感的病理标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Imaging Study of Encephalomalacia Fluid-Attenuated Inversion Recovery (FLAIR) Hyperintense Lesions in Posttraumatic Epilepsy.

This study introduced new MRI techniques such as neurite orientation dispersion and density imaging (NODDI); NODDI applies a three-compartment tissue model to multishell DWI data that allows the examination of both the intra- and extracellular properties of white matter tissue. This, in turn, enables us to distinguish the two key aspects of axonal pathology-the packing density of axons in the white matter and the spatial organization of axons (orientation dispersion (OD)). NODDI is used to detect possible abnormalities of posttraumatic encephalomalacia fluid-attenuated inversion recovery (FLAIR) hyperintense lesions in neurite density and dispersion. Methods. 26 epilepsy patients associated with FLAIR hyperintensity around the trauma encephalomalacia region were in the epilepsy group. 18 posttraumatic patients with a FLAIR hyperintense encephalomalacia region were in the nonepilepsy group. Neurite density and dispersion affection in FLAIR hyperintense lesions around encephalomalacia were measured by NODDI using intracellular volume fraction (ICVF), and we compare these findings with conventional diffusion MRI parameters, namely, fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Differences were compared between the epilepsy and nonepilepsy groups, as well as in the FLAIR hyperintense part and in the FLAIR hypointense part to try to find neurite density and dispersion differences in these parts. Results. ICVF of FLAIR hyperintense lesions in the epilepsy group was significantly higher than that in the nonepilepsy group (P < 0.001). ICVF reveals more information of FLAIR(+) and FLAIR(-) parts of encephalomalacia than OD and FA and ADC. Conclusion. The FLAIR hyperintense part around encephalomalacia in the epilepsy group showed higher ICVF, indicating that this part may have more neurite density and dispersion and may be contributing to epilepsy. NODDI indicated high neurite density with the intensity of myelin in the FLAIR hyperintense lesion. Therefore, NODDI likely shows that neurite density may be a more sensitive marker of pathology than FA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
期刊最新文献
A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain. Retracted: Sports Augmented Cognitive Benefits: An fMRI Study of Executive Function with Go/NoGo Task Vasoprotective Effects of Hyperoside against Cerebral Ischemia/Reperfusion Injury in Rats: Activation of Large-Conductance Ca2+-Activated K+ Channels. Acupuncture Alleviates CUMS-Induced Depression-Like Behaviors by Restoring Prefrontal Cortex Neuroplasticity. Functional Connectivity Changes in the Insular Subregions of Patients with Obstructive Sleep Apnea after 6 Months of Continuous Positive Airway Pressure Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1