{"title":"半胱氨酸代谢在人代谢综合征中的生理和病理生理作用。","authors":"Arunachalam Muthuraman, Muthusamy Ramesh, Sohrab A Shaikh, Subramanian Aswinprakash, Dhamodharan Jagadeesh","doi":"10.2174/1872312814666211210111820","DOIUrl":null,"url":null,"abstract":"<p><p>Cysteine is one of the major intermediate products of cellular amino-acid metabolism. It is a semi-essential amino acid for protein synthesis. Besides, it is also employed in the regulation of major endogenous anti-oxidant molecule i.e., reduced glutathione (GSH). Further, it is a precursor of multiple sulfur-containing molecules like hydrogen sulfide, lanthionine, taurine, coenzyme A and biotin. It is also one of the key molecules for post-translational modifications of various cellular proteins. In physiological conditions, it is employed in the sulfhydration process and plays a key role in the physiology modification of the inflammatory process in various organs, including the neurological system. The catabolism of cysteine is regulated by cysteine dioxygenase enzyme activity. The dysregulated conditions of cysteine and cysteine-associated hydrogen sulfide metabolism are widely employed in the acceleration of the neurodegenerative process. Moreover, the upregulation of cysteine and hydrogen sulfide synthesis occurs via the reverse trans-sulfuration process. This process helps to manage the worsening of a pathological condition of a cellular system. Moreover, it is also employed in the accumulation of homocysteine contents. Further, both cysteine and homocysteine molecules are widely accepted as biomarkers for various types of diseases. Therefore, the targets involved in the regulation of cysteine have been considered as valid targets to treat various disorders like cardiac disease, ischemic stroke, diabetes, cancer, and renal dysfunction.</p>","PeriodicalId":11339,"journal":{"name":"Drug metabolism letters","volume":"14 3","pages":"177-192"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Physiological and Pathophysiological Role of Cysteine Metabolism in Human Metabolic Syndrome.\",\"authors\":\"Arunachalam Muthuraman, Muthusamy Ramesh, Sohrab A Shaikh, Subramanian Aswinprakash, Dhamodharan Jagadeesh\",\"doi\":\"10.2174/1872312814666211210111820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cysteine is one of the major intermediate products of cellular amino-acid metabolism. It is a semi-essential amino acid for protein synthesis. Besides, it is also employed in the regulation of major endogenous anti-oxidant molecule i.e., reduced glutathione (GSH). Further, it is a precursor of multiple sulfur-containing molecules like hydrogen sulfide, lanthionine, taurine, coenzyme A and biotin. It is also one of the key molecules for post-translational modifications of various cellular proteins. In physiological conditions, it is employed in the sulfhydration process and plays a key role in the physiology modification of the inflammatory process in various organs, including the neurological system. The catabolism of cysteine is regulated by cysteine dioxygenase enzyme activity. The dysregulated conditions of cysteine and cysteine-associated hydrogen sulfide metabolism are widely employed in the acceleration of the neurodegenerative process. Moreover, the upregulation of cysteine and hydrogen sulfide synthesis occurs via the reverse trans-sulfuration process. This process helps to manage the worsening of a pathological condition of a cellular system. Moreover, it is also employed in the accumulation of homocysteine contents. Further, both cysteine and homocysteine molecules are widely accepted as biomarkers for various types of diseases. Therefore, the targets involved in the regulation of cysteine have been considered as valid targets to treat various disorders like cardiac disease, ischemic stroke, diabetes, cancer, and renal dysfunction.</p>\",\"PeriodicalId\":11339,\"journal\":{\"name\":\"Drug metabolism letters\",\"volume\":\"14 3\",\"pages\":\"177-192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug metabolism letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1872312814666211210111820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872312814666211210111820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physiological and Pathophysiological Role of Cysteine Metabolism in Human Metabolic Syndrome.
Cysteine is one of the major intermediate products of cellular amino-acid metabolism. It is a semi-essential amino acid for protein synthesis. Besides, it is also employed in the regulation of major endogenous anti-oxidant molecule i.e., reduced glutathione (GSH). Further, it is a precursor of multiple sulfur-containing molecules like hydrogen sulfide, lanthionine, taurine, coenzyme A and biotin. It is also one of the key molecules for post-translational modifications of various cellular proteins. In physiological conditions, it is employed in the sulfhydration process and plays a key role in the physiology modification of the inflammatory process in various organs, including the neurological system. The catabolism of cysteine is regulated by cysteine dioxygenase enzyme activity. The dysregulated conditions of cysteine and cysteine-associated hydrogen sulfide metabolism are widely employed in the acceleration of the neurodegenerative process. Moreover, the upregulation of cysteine and hydrogen sulfide synthesis occurs via the reverse trans-sulfuration process. This process helps to manage the worsening of a pathological condition of a cellular system. Moreover, it is also employed in the accumulation of homocysteine contents. Further, both cysteine and homocysteine molecules are widely accepted as biomarkers for various types of diseases. Therefore, the targets involved in the regulation of cysteine have been considered as valid targets to treat various disorders like cardiac disease, ischemic stroke, diabetes, cancer, and renal dysfunction.
期刊介绍:
Drug Metabolism Letters publishes letters and research articles on major advances in all areas of drug metabolism and disposition. The emphasis is on publishing quality papers very rapidly by taking full advantage of the Internet technology both for the submission and review of manuscripts. The journal covers the following areas: In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites.