基于金纳米粒子的疫苗开发平台

Q1 Pharmacology, Toxicology and Pharmaceutics Drug Discovery Today: Technologies Pub Date : 2020-12-01 DOI:10.1016/j.ddtec.2021.02.001
Ruth Mateu Ferrando , Luigi Lay , Laura Polito
{"title":"基于金纳米粒子的疫苗开发平台","authors":"Ruth Mateu Ferrando ,&nbsp;Luigi Lay ,&nbsp;Laura Polito","doi":"10.1016/j.ddtec.2021.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Since their discovery, therapeutic or prophylactic vaccines represent a promising option to prevent or cure infections and other pathologies, such as cancer or autoimmune disorders. More recently, among a number of nanomaterials, gold nanoparticles (AuNPs) have emerged as novel tools for vaccine developments, thanks to their inherent ability to tune and upregulate immune response. Moreover, owing to their features, AuNPs can exert optimal actions both as delivery systems and as adjuvants. Notwithstanding the potential huge impact in vaccinology, some challenges remain before AuNPs in vaccine formulations can be translated into the clinic. The current review provides an updated overview of the most recent and effective application of gold nanoparticles as efficient means to develop a new generation of vaccine.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2021.02.001","citationCount":"31","resultStr":"{\"title\":\"Gold nanoparticle-based platforms for vaccine development\",\"authors\":\"Ruth Mateu Ferrando ,&nbsp;Luigi Lay ,&nbsp;Laura Polito\",\"doi\":\"10.1016/j.ddtec.2021.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since their discovery, therapeutic or prophylactic vaccines represent a promising option to prevent or cure infections and other pathologies, such as cancer or autoimmune disorders. More recently, among a number of nanomaterials, gold nanoparticles (AuNPs) have emerged as novel tools for vaccine developments, thanks to their inherent ability to tune and upregulate immune response. Moreover, owing to their features, AuNPs can exert optimal actions both as delivery systems and as adjuvants. Notwithstanding the potential huge impact in vaccinology, some challenges remain before AuNPs in vaccine formulations can be translated into the clinic. The current review provides an updated overview of the most recent and effective application of gold nanoparticles as efficient means to develop a new generation of vaccine.</p></div>\",\"PeriodicalId\":36012,\"journal\":{\"name\":\"Drug Discovery Today: Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddtec.2021.02.001\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740674921000032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674921000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 31

摘要

自发现以来,治疗性或预防性疫苗代表了预防或治愈感染和其他病理(如癌症或自身免疫性疾病)的有希望的选择。最近,在许多纳米材料中,金纳米颗粒(AuNPs)由于其固有的调节和上调免疫反应的能力而成为疫苗开发的新工具。此外,由于它们的特性,aunp可以作为递送系统和佐剂发挥最佳作用。尽管对疫苗学有潜在的巨大影响,但在将疫苗制剂中的aunp转化为临床之前,仍存在一些挑战。当前的综述提供了金纳米颗粒作为开发新一代疫苗的有效手段的最新和有效应用的最新概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gold nanoparticle-based platforms for vaccine development

Since their discovery, therapeutic or prophylactic vaccines represent a promising option to prevent or cure infections and other pathologies, such as cancer or autoimmune disorders. More recently, among a number of nanomaterials, gold nanoparticles (AuNPs) have emerged as novel tools for vaccine developments, thanks to their inherent ability to tune and upregulate immune response. Moreover, owing to their features, AuNPs can exert optimal actions both as delivery systems and as adjuvants. Notwithstanding the potential huge impact in vaccinology, some challenges remain before AuNPs in vaccine formulations can be translated into the clinic. The current review provides an updated overview of the most recent and effective application of gold nanoparticles as efficient means to develop a new generation of vaccine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today: Technologies
Drug Discovery Today: Technologies Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
自引率
0.00%
发文量
0
期刊介绍: Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.
期刊最新文献
Proteomics advances towards developing SARS-CoV-2 therapeutics using in silico drug repurposing approaches Application of proteomic data in the translation of in vitro observations to associated clinical outcomes Advances in sample preparation for membrane proteome quantification Application of proteomics to understand maturation of drug metabolizing enzymes and transporters for the optimization of pediatric drug therapy Data-independent acquisition (DIA): An emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1