模型不确定性下令人满意的环境政策框架。

Environmental modeling and assessment Pub Date : 2021-01-01 Epub Date: 2021-03-22 DOI:10.1007/s10666-021-09761-x
Stergios Athanasoglou, Valentina Bosetti, Laurent Drouet
{"title":"模型不确定性下令人满意的环境政策框架。","authors":"Stergios Athanasoglou,&nbsp;Valentina Bosetti,&nbsp;Laurent Drouet","doi":"10.1007/s10666-021-09761-x","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel framework for the economic assessment of environmental policy. Our main point of departure from existing work is the adoption of a <i>satisficing</i>, as opposed to optimizing, modeling approach. Along these lines, we place primary emphasis on the extent to which different policies meet a set of goals at a specific future date instead of their performance vis-a-vis some intertemporal objective function. Consistent to the nature of environmental policymaking, our model takes explicit account of model uncertainty. To this end, the decision criterion we propose is an analog of the well-known success-probability criterion adapted to settings characterized by model uncertainty. We apply our criterion to the climate-change context and the probability distributions constructed by Drouet et al. (2015) linking carbon budgets to future consumption. Insights from computational geometry facilitate computations considerably and allow for the efficient application of the model in high-dimensional settings.</p>","PeriodicalId":72933,"journal":{"name":"Environmental modeling and assessment","volume":"26 4","pages":"433-445"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10666-021-09761-x","citationCount":"2","resultStr":"{\"title\":\"A Satisficing Framework for Environmental Policy Under Model Uncertainty.\",\"authors\":\"Stergios Athanasoglou,&nbsp;Valentina Bosetti,&nbsp;Laurent Drouet\",\"doi\":\"10.1007/s10666-021-09761-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a novel framework for the economic assessment of environmental policy. Our main point of departure from existing work is the adoption of a <i>satisficing</i>, as opposed to optimizing, modeling approach. Along these lines, we place primary emphasis on the extent to which different policies meet a set of goals at a specific future date instead of their performance vis-a-vis some intertemporal objective function. Consistent to the nature of environmental policymaking, our model takes explicit account of model uncertainty. To this end, the decision criterion we propose is an analog of the well-known success-probability criterion adapted to settings characterized by model uncertainty. We apply our criterion to the climate-change context and the probability distributions constructed by Drouet et al. (2015) linking carbon budgets to future consumption. Insights from computational geometry facilitate computations considerably and allow for the efficient application of the model in high-dimensional settings.</p>\",\"PeriodicalId\":72933,\"journal\":{\"name\":\"Environmental modeling and assessment\",\"volume\":\"26 4\",\"pages\":\"433-445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10666-021-09761-x\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental modeling and assessment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10666-021-09761-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental modeling and assessment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10666-021-09761-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个新的环境政策经济评估框架。我们对现有工作的主要出发点是采用令人满意的建模方法,而不是优化建模方法。沿着这些思路,我们主要强调不同政策在特定的未来日期满足一系列目标的程度,而不是它们相对于某些跨期目标函数的表现。与环境政策制定的本质一致,我们的模型明确考虑了模型的不确定性。为此,我们提出的决策准则是一个类似于众所周知的成功-概率准则,适用于以模型不确定性为特征的设置。我们将我们的标准应用于气候变化背景和杜洛埃等人(2015)构建的将碳预算与未来消费联系起来的概率分布。计算几何的见解大大简化了计算,并允许在高维环境中有效地应用模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Satisficing Framework for Environmental Policy Under Model Uncertainty.

We propose a novel framework for the economic assessment of environmental policy. Our main point of departure from existing work is the adoption of a satisficing, as opposed to optimizing, modeling approach. Along these lines, we place primary emphasis on the extent to which different policies meet a set of goals at a specific future date instead of their performance vis-a-vis some intertemporal objective function. Consistent to the nature of environmental policymaking, our model takes explicit account of model uncertainty. To this end, the decision criterion we propose is an analog of the well-known success-probability criterion adapted to settings characterized by model uncertainty. We apply our criterion to the climate-change context and the probability distributions constructed by Drouet et al. (2015) linking carbon budgets to future consumption. Insights from computational geometry facilitate computations considerably and allow for the efficient application of the model in high-dimensional settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GCC Countries Strategic Options in a Global Transition to Zero-Net Emissions. Spatial-Temporal Pattern and Influencing Factors of Ecological Efficiency in Zhejiang-Based on Super-SBM Method. Green Closed-Loop Supply Chain Network Design During the Coronavirus (COVID-19) Pandemic: a Case Study in the Iranian Automotive Industry. Trajectories for Energy Transition in EU-28 Countries over the Period 2000–2019: a Multidimensional Approach Machine Learning-Based Modeling of the Environmental Degradation, Institutional Quality, and Economic Growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1