{"title":"层析成像中的迭代解析扩展。","authors":"Gengsheng L Zeng","doi":"10.1186/s42492-021-00099-5","DOIUrl":null,"url":null,"abstract":"<p><p>If a spatial-domain function has a finite support, its Fourier transform is an entire function. The Taylor series expansion of an entire function converges at every finite point in the complex plane. The analytic continuation theory suggests that a finite-sized object can be uniquely determined by its frequency components in a very small neighborhood. Trying to obtain such an exact Taylor expansion is difficult. This paper proposes an iterative algorithm to extend the measured frequency components to unmeasured regions. Computer simulations show that the proposed algorithm converges very slowly, indicating that the problem is too ill-posed to be practically solvable using available methods.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804128/pdf/","citationCount":"1","resultStr":"{\"title\":\"Iterative analytic extension in tomographic imaging.\",\"authors\":\"Gengsheng L Zeng\",\"doi\":\"10.1186/s42492-021-00099-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>If a spatial-domain function has a finite support, its Fourier transform is an entire function. The Taylor series expansion of an entire function converges at every finite point in the complex plane. The analytic continuation theory suggests that a finite-sized object can be uniquely determined by its frequency components in a very small neighborhood. Trying to obtain such an exact Taylor expansion is difficult. This paper proposes an iterative algorithm to extend the measured frequency components to unmeasured regions. Computer simulations show that the proposed algorithm converges very slowly, indicating that the problem is too ill-posed to be practically solvable using available methods.</p>\",\"PeriodicalId\":52384,\"journal\":{\"name\":\"Visual Computing for Industry, Biomedicine, and Art\",\"volume\":\" \",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804128/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry, Biomedicine, and Art\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-021-00099-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-021-00099-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Iterative analytic extension in tomographic imaging.
If a spatial-domain function has a finite support, its Fourier transform is an entire function. The Taylor series expansion of an entire function converges at every finite point in the complex plane. The analytic continuation theory suggests that a finite-sized object can be uniquely determined by its frequency components in a very small neighborhood. Trying to obtain such an exact Taylor expansion is difficult. This paper proposes an iterative algorithm to extend the measured frequency components to unmeasured regions. Computer simulations show that the proposed algorithm converges very slowly, indicating that the problem is too ill-posed to be practically solvable using available methods.