使用高斯混合随机划分图生成器评估网络密度和稀疏度对社区检测的影响。

Ashani Wickramasinghe, Saman Muthukumarana
{"title":"使用高斯混合随机划分图生成器评估网络密度和稀疏度对社区检测的影响。","authors":"Ashani Wickramasinghe,&nbsp;Saman Muthukumarana","doi":"10.1007/s41870-022-00873-5","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of sub-networks within a network is essential to understand the functionality of a network. This process is called as 'Community detection'. There are various existing community detection algorithms, and the performance of these algorithms can be varied based on the network structure. In this paper, we introduce a novel random graph generator using a mixture of Gaussian distributions. The community sizes of the generated network depend on the given Gaussian distributions. We then develop simulation studies to understand the impact of density and sparsity of the network on community detection. We use Infomap, Label propagation, Spinglass, and Louvain algorithms to detect communities. The similarity between true communities and detected communities is evaluated using Adjusted Rand Index, Adjusted Mutual Information, and Normalized Mutual Information similarity scores. We also develop a method to generate heatmaps to compare those similarity score values. The results indicate that the Louvain algorithm has the highest capacity to detect perfect communities while Label Propagation has the lowest capacity.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":"14 2","pages":"607-618"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794047/pdf/","citationCount":"5","resultStr":"{\"title\":\"Assessing the impact of the density and sparsity of the network on community detection using a Gaussian mixture random partition graph generator.\",\"authors\":\"Ashani Wickramasinghe,&nbsp;Saman Muthukumarana\",\"doi\":\"10.1007/s41870-022-00873-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identification of sub-networks within a network is essential to understand the functionality of a network. This process is called as 'Community detection'. There are various existing community detection algorithms, and the performance of these algorithms can be varied based on the network structure. In this paper, we introduce a novel random graph generator using a mixture of Gaussian distributions. The community sizes of the generated network depend on the given Gaussian distributions. We then develop simulation studies to understand the impact of density and sparsity of the network on community detection. We use Infomap, Label propagation, Spinglass, and Louvain algorithms to detect communities. The similarity between true communities and detected communities is evaluated using Adjusted Rand Index, Adjusted Mutual Information, and Normalized Mutual Information similarity scores. We also develop a method to generate heatmaps to compare those similarity score values. The results indicate that the Louvain algorithm has the highest capacity to detect perfect communities while Label Propagation has the lowest capacity.</p>\",\"PeriodicalId\":73455,\"journal\":{\"name\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"volume\":\"14 2\",\"pages\":\"607-618\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794047/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-022-00873-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-022-00873-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

识别网络中的子网络对于理解网络的功能至关重要。这个过程被称为“社区检测”。现有的社区检测算法有很多种,这些算法的性能会因网络结构的不同而不同。本文介绍了一种基于混合高斯分布的随机图生成器。生成的网络的社区大小取决于给定的高斯分布。然后,我们进行模拟研究,以了解网络的密度和稀疏度对社区检测的影响。我们使用Infomap,标签传播,Spinglass和Louvain算法来检测社区。真实社区和检测社区之间的相似性使用调整后的兰德指数、调整后的互信息和标准化的互信息相似性得分来评估。我们还开发了一种生成热图的方法来比较这些相似得分值。结果表明,Louvain算法检测完美社区的能力最高,而Label Propagation算法检测完美社区的能力最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing the impact of the density and sparsity of the network on community detection using a Gaussian mixture random partition graph generator.

Identification of sub-networks within a network is essential to understand the functionality of a network. This process is called as 'Community detection'. There are various existing community detection algorithms, and the performance of these algorithms can be varied based on the network structure. In this paper, we introduce a novel random graph generator using a mixture of Gaussian distributions. The community sizes of the generated network depend on the given Gaussian distributions. We then develop simulation studies to understand the impact of density and sparsity of the network on community detection. We use Infomap, Label propagation, Spinglass, and Louvain algorithms to detect communities. The similarity between true communities and detected communities is evaluated using Adjusted Rand Index, Adjusted Mutual Information, and Normalized Mutual Information similarity scores. We also develop a method to generate heatmaps to compare those similarity score values. The results indicate that the Louvain algorithm has the highest capacity to detect perfect communities while Label Propagation has the lowest capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convolutional neural network based children recognition system using contactless fingerprints. On utilizing modified TOPSIS with R-norm q-rung picture fuzzy information measure green supplier selection. Adoption of machine learning algorithm for predicting the length of stay of patients (construction workers) during COVID pandemic. Adoption and sustainability of bitcoin and the blockchain technology in Nigeria. Debunking multi-lingual social media posts using deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1