快速安装斑马鱼幼体以进行脑成像。

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Zebrafish Pub Date : 2021-12-01 DOI:10.1089/zeb.2021.0062
Yijie Geng, Randall T Peterson
{"title":"快速安装斑马鱼幼体以进行脑成像。","authors":"Yijie Geng, Randall T Peterson","doi":"10.1089/zeb.2021.0062","DOIUrl":null,"url":null,"abstract":"<p><p>Brain imaging requires mounting of zebrafish larvae in a vertical position, but anesthetized or fixed larvae tend to fall on their sides without external support. Current solution is to manually hold individual larva until liquid agarose solidifies, which is time consuming, labor intensive, and unfriendly to beginners. We developed a method to form larva-shaped slots in agarose gel using a computer numerical controlled manufactured mold. Each slot nearly perfectly fits a larva in its upright position, and larvae can be easily mounted by inserting into the slots. On average, each larva can be mounted in <1 min using this method.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716516/pdf/zeb.2021.0062.pdf","citationCount":"0","resultStr":"{\"title\":\"Rapid Mounting of Zebrafish Larvae for Brain Imaging.\",\"authors\":\"Yijie Geng, Randall T Peterson\",\"doi\":\"10.1089/zeb.2021.0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain imaging requires mounting of zebrafish larvae in a vertical position, but anesthetized or fixed larvae tend to fall on their sides without external support. Current solution is to manually hold individual larva until liquid agarose solidifies, which is time consuming, labor intensive, and unfriendly to beginners. We developed a method to form larva-shaped slots in agarose gel using a computer numerical controlled manufactured mold. Each slot nearly perfectly fits a larva in its upright position, and larvae can be easily mounted by inserting into the slots. On average, each larva can be mounted in <1 min using this method.</p>\",\"PeriodicalId\":23872,\"journal\":{\"name\":\"Zebrafish\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716516/pdf/zeb.2021.0062.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zebrafish\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2021.0062\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0062","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脑成像需要将斑马鱼幼体垂直安装,但麻醉或固定的幼体在没有外部支撑的情况下容易侧倒。目前的解决方案是人工固定幼体直到液体琼脂糖凝固,这种方法耗时耗力,对初学者也不友好。我们开发了一种方法,使用计算机数控制造的模具在琼脂糖凝胶中形成幼虫形状的槽。每个槽几乎都能完全贴合直立状态下的幼虫,将幼虫插入槽中即可轻松安装。平均每只幼虫可在
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid Mounting of Zebrafish Larvae for Brain Imaging.

Brain imaging requires mounting of zebrafish larvae in a vertical position, but anesthetized or fixed larvae tend to fall on their sides without external support. Current solution is to manually hold individual larva until liquid agarose solidifies, which is time consuming, labor intensive, and unfriendly to beginners. We developed a method to form larva-shaped slots in agarose gel using a computer numerical controlled manufactured mold. Each slot nearly perfectly fits a larva in its upright position, and larvae can be easily mounted by inserting into the slots. On average, each larva can be mounted in <1 min using this method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
期刊最新文献
Fish in a Dish: Using Zebrafish in Authentic Science Research Experiences for Under-represented High School Students from West Virginia. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish (Danio rerio) Gynogenetic Production by Heat Shock: Comparison Between Mitotic and Meiotic Treatment. Curcumin-Encapsulated Nanomicelles Promote Tissue Regeneration in Zebrafish Eleutheroembryo. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1