Elise D Barras, Chiara E Hampton, Catherine Takawira, Takashi Taguchi, Ali Nourbakhsh, Mandi J Lopez
{"title":"猪模型对超急性脊柱创伤反应的血流动力学改变。","authors":"Elise D Barras, Chiara E Hampton, Catherine Takawira, Takashi Taguchi, Ali Nourbakhsh, Mandi J Lopez","doi":"10.30802/AALAS-CM-21-000067","DOIUrl":null,"url":null,"abstract":"<p><p>Acute spinal cord injury (ASCI) is a devastating event that can have severe hemodynamic consequences, depending on location and severity of the lesion. Knowledge of hyperacute hemodynamic changes is important for researchers using porcine models of thoracic ASCI. The goal of this study was to determine the hyperacute hemodynamic changes observed after ASCI when using pigs as their own controls. Five Yucatan gilts were anesthetized, and a dorsal laminectomy performed at T10-T12. Standardized blunt trauma was applied for 5 consecutive min, and hemodynamic variables were collected 5 min before ASCI, and at 2, 4, 6, 8, 10, 20, 30, 60, 80 and 120 min after ASCI. Arterial blood gas samples were collected at 60 min and 10 min before, and at 30 min and between 120 and 240 min after ASCI. Parametric data were analyzed using a mixed effects model with time point as the fixed factor and subject as the random factor. We found no effect on heart rate, pulse pressure, SpO₂, EtCO₂, and respiratory rate between baseline and timepoints after ASCI. Diastolic arterial pressure, mean arterial pressure, and systolic arterial pressure fell significantly by 18%, 16%, and 15%, respectively, at 2 min after ASCI. However, none of the decrements in arterial pressures resulted in hypotension at any time point. Heart rate did not change significantly after ASCI. Blood glucose progressively increased to 50% above baseline between 120 and 240 minutes after ASCI. Low thoracic ASCI caused a consistent and statistically significant but clinically minor hyperacute decrease in arterial pressures (-15%) that did not produce hypotension or metabolic changes suggestive of tissue hypoperfusion. Our findings using this model suggest that mean arterial pressures should be maintained above 85 mm Hg prior to spinal trauma in order to avoid hypotensive states after ASCI.</p>","PeriodicalId":10659,"journal":{"name":"Comparative medicine","volume":"72 1","pages":"30-37"},"PeriodicalIF":1.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915416/pdf/cm2022000030.pdf","citationCount":"0","resultStr":"{\"title\":\"Hemodynamic Changes in Response to Hyperacute Spinal Trauma in a Swine Model.\",\"authors\":\"Elise D Barras, Chiara E Hampton, Catherine Takawira, Takashi Taguchi, Ali Nourbakhsh, Mandi J Lopez\",\"doi\":\"10.30802/AALAS-CM-21-000067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute spinal cord injury (ASCI) is a devastating event that can have severe hemodynamic consequences, depending on location and severity of the lesion. Knowledge of hyperacute hemodynamic changes is important for researchers using porcine models of thoracic ASCI. The goal of this study was to determine the hyperacute hemodynamic changes observed after ASCI when using pigs as their own controls. Five Yucatan gilts were anesthetized, and a dorsal laminectomy performed at T10-T12. Standardized blunt trauma was applied for 5 consecutive min, and hemodynamic variables were collected 5 min before ASCI, and at 2, 4, 6, 8, 10, 20, 30, 60, 80 and 120 min after ASCI. Arterial blood gas samples were collected at 60 min and 10 min before, and at 30 min and between 120 and 240 min after ASCI. Parametric data were analyzed using a mixed effects model with time point as the fixed factor and subject as the random factor. We found no effect on heart rate, pulse pressure, SpO₂, EtCO₂, and respiratory rate between baseline and timepoints after ASCI. Diastolic arterial pressure, mean arterial pressure, and systolic arterial pressure fell significantly by 18%, 16%, and 15%, respectively, at 2 min after ASCI. However, none of the decrements in arterial pressures resulted in hypotension at any time point. Heart rate did not change significantly after ASCI. Blood glucose progressively increased to 50% above baseline between 120 and 240 minutes after ASCI. Low thoracic ASCI caused a consistent and statistically significant but clinically minor hyperacute decrease in arterial pressures (-15%) that did not produce hypotension or metabolic changes suggestive of tissue hypoperfusion. Our findings using this model suggest that mean arterial pressures should be maintained above 85 mm Hg prior to spinal trauma in order to avoid hypotensive states after ASCI.</p>\",\"PeriodicalId\":10659,\"journal\":{\"name\":\"Comparative medicine\",\"volume\":\"72 1\",\"pages\":\"30-37\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915416/pdf/cm2022000030.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.30802/AALAS-CM-21-000067\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-CM-21-000067","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Hemodynamic Changes in Response to Hyperacute Spinal Trauma in a Swine Model.
Acute spinal cord injury (ASCI) is a devastating event that can have severe hemodynamic consequences, depending on location and severity of the lesion. Knowledge of hyperacute hemodynamic changes is important for researchers using porcine models of thoracic ASCI. The goal of this study was to determine the hyperacute hemodynamic changes observed after ASCI when using pigs as their own controls. Five Yucatan gilts were anesthetized, and a dorsal laminectomy performed at T10-T12. Standardized blunt trauma was applied for 5 consecutive min, and hemodynamic variables were collected 5 min before ASCI, and at 2, 4, 6, 8, 10, 20, 30, 60, 80 and 120 min after ASCI. Arterial blood gas samples were collected at 60 min and 10 min before, and at 30 min and between 120 and 240 min after ASCI. Parametric data were analyzed using a mixed effects model with time point as the fixed factor and subject as the random factor. We found no effect on heart rate, pulse pressure, SpO₂, EtCO₂, and respiratory rate between baseline and timepoints after ASCI. Diastolic arterial pressure, mean arterial pressure, and systolic arterial pressure fell significantly by 18%, 16%, and 15%, respectively, at 2 min after ASCI. However, none of the decrements in arterial pressures resulted in hypotension at any time point. Heart rate did not change significantly after ASCI. Blood glucose progressively increased to 50% above baseline between 120 and 240 minutes after ASCI. Low thoracic ASCI caused a consistent and statistically significant but clinically minor hyperacute decrease in arterial pressures (-15%) that did not produce hypotension or metabolic changes suggestive of tissue hypoperfusion. Our findings using this model suggest that mean arterial pressures should be maintained above 85 mm Hg prior to spinal trauma in order to avoid hypotensive states after ASCI.
期刊介绍:
Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.