吉氟沙星共轭银纳米粒子的合成、对人致病菌的抑菌效果及透射电镜形态学研究。

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2021-12-01 DOI:10.1080/21691401.2021.2003805
Touqeer Ahmad, Fazal Mahbood, Rizwana Sarwar, Ayesha Iqbal, Majid Khan, Sayyar Muhammad, Khamis Al-Riyami, Nusrat Hussain, Jalal Uddin, Ajmal Khan, Ahmed Al-Harrasi
{"title":"吉氟沙星共轭银纳米粒子的合成、对人致病菌的抑菌效果及透射电镜形态学研究。","authors":"Touqeer Ahmad,&nbsp;Fazal Mahbood,&nbsp;Rizwana Sarwar,&nbsp;Ayesha Iqbal,&nbsp;Majid Khan,&nbsp;Sayyar Muhammad,&nbsp;Khamis Al-Riyami,&nbsp;Nusrat Hussain,&nbsp;Jalal Uddin,&nbsp;Ajmal Khan,&nbsp;Ahmed Al-Harrasi","doi":"10.1080/21691401.2021.2003805","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-loaded nanoparticles (NPs) allow specific accumulation and controlled release of drugs to infected tissues with minimal cytotoxicity. In this study, gemifloxacin conjugated silver nanoparticles (Gemi-AgNPs) were synthesized, and the amplification of their antibacterial potential against the human pathogen as well as their stability was monitored under physiological conditions. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the interaction between -NH<sub>2</sub> and -OH functional moiety and the metal surface. The morphological analyses <i>via</i> transmission electron microscopy revealed that Gemi-AgNPs has a round oval shape and average particle size of 22.23 ± 2 nm. The antibacterial and antibiofilm activities of these NPS showed that Gemi-AgNPs exhibit excellent antimicrobial and biofilm inhibition activity against human pathogens, namely, <i>Proteus mirabilis</i> (<i>P. mirabilis</i>) and methicillin-resistant <i>Staphylococcus aureus</i> (<i>MRSA</i>). A significant increase in the antibiofilm activity of Gemi-AgNPs was confirmed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, and microscopic analysis. Gemi-AgNPs exhibited the ability to inhibit urease with an IC<sub>50</sub> value of 57.4 ± 0.72 µg/mL. The changes in the bacterial cell morphology were analyzed <i>via</i> TEM, which revealed that cell membranes disrupted and completely destroyed the cell morphology by the treatment of Gemi-AgNPs.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"49 1","pages":"661-671"},"PeriodicalIF":4.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis of gemifloxacin conjugated silver nanoparticles, their amplified bacterial efficacy against human pathogen and their morphological study <i>via</i> TEM analysis.\",\"authors\":\"Touqeer Ahmad,&nbsp;Fazal Mahbood,&nbsp;Rizwana Sarwar,&nbsp;Ayesha Iqbal,&nbsp;Majid Khan,&nbsp;Sayyar Muhammad,&nbsp;Khamis Al-Riyami,&nbsp;Nusrat Hussain,&nbsp;Jalal Uddin,&nbsp;Ajmal Khan,&nbsp;Ahmed Al-Harrasi\",\"doi\":\"10.1080/21691401.2021.2003805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-loaded nanoparticles (NPs) allow specific accumulation and controlled release of drugs to infected tissues with minimal cytotoxicity. In this study, gemifloxacin conjugated silver nanoparticles (Gemi-AgNPs) were synthesized, and the amplification of their antibacterial potential against the human pathogen as well as their stability was monitored under physiological conditions. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the interaction between -NH<sub>2</sub> and -OH functional moiety and the metal surface. The morphological analyses <i>via</i> transmission electron microscopy revealed that Gemi-AgNPs has a round oval shape and average particle size of 22.23 ± 2 nm. The antibacterial and antibiofilm activities of these NPS showed that Gemi-AgNPs exhibit excellent antimicrobial and biofilm inhibition activity against human pathogens, namely, <i>Proteus mirabilis</i> (<i>P. mirabilis</i>) and methicillin-resistant <i>Staphylococcus aureus</i> (<i>MRSA</i>). A significant increase in the antibiofilm activity of Gemi-AgNPs was confirmed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, and microscopic analysis. Gemi-AgNPs exhibited the ability to inhibit urease with an IC<sub>50</sub> value of 57.4 ± 0.72 µg/mL. The changes in the bacterial cell morphology were analyzed <i>via</i> TEM, which revealed that cell membranes disrupted and completely destroyed the cell morphology by the treatment of Gemi-AgNPs.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"49 1\",\"pages\":\"661-671\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2021.2003805\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2021.2003805","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

载药纳米颗粒(NPs)允许药物在感染组织中以最小的细胞毒性特异性积累和控制释放。本研究合成了gemiflo沙星共轭银纳米粒子(Gemi-AgNPs),并在生理条件下对其抗菌潜力进行了扩增和稳定性监测。傅里叶红外光谱(FTIR)分析证实了-NH2和-OH官能团与金属表面的相互作用。透射电镜形貌分析表明,Gemi-AgNPs为圆形椭圆形,平均粒径为22.23±2 nm。这些NPS的抗菌和抗生物膜活性表明,Gemi-AgNPs对人类病原体,即奇异变形杆菌(P. mirabilis)和耐甲氧西林金黄色葡萄球菌(MRSA)具有良好的抗菌和生物膜抑制活性。通过结晶紫、3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑(MTT)染色和显微分析证实了Gemi-AgNPs的抗生物膜活性显著增加。Gemi-AgNPs表现出抑制脲酶的能力,IC50值为57.4±0.72µg/mL。透射电镜(TEM)分析了细菌细胞形态的变化,发现经Gemi-AgNPs处理后,细胞膜被破坏,细胞形态被完全破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of gemifloxacin conjugated silver nanoparticles, their amplified bacterial efficacy against human pathogen and their morphological study via TEM analysis.

Drug-loaded nanoparticles (NPs) allow specific accumulation and controlled release of drugs to infected tissues with minimal cytotoxicity. In this study, gemifloxacin conjugated silver nanoparticles (Gemi-AgNPs) were synthesized, and the amplification of their antibacterial potential against the human pathogen as well as their stability was monitored under physiological conditions. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the interaction between -NH2 and -OH functional moiety and the metal surface. The morphological analyses via transmission electron microscopy revealed that Gemi-AgNPs has a round oval shape and average particle size of 22.23 ± 2 nm. The antibacterial and antibiofilm activities of these NPS showed that Gemi-AgNPs exhibit excellent antimicrobial and biofilm inhibition activity against human pathogens, namely, Proteus mirabilis (P. mirabilis) and methicillin-resistant Staphylococcus aureus (MRSA). A significant increase in the antibiofilm activity of Gemi-AgNPs was confirmed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, and microscopic analysis. Gemi-AgNPs exhibited the ability to inhibit urease with an IC50 value of 57.4 ± 0.72 µg/mL. The changes in the bacterial cell morphology were analyzed via TEM, which revealed that cell membranes disrupted and completely destroyed the cell morphology by the treatment of Gemi-AgNPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
期刊最新文献
Zingiberis rhizoma-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice. HBOC alleviated tumour hypoxia during radiotherapy more intensely in large solid tumours than regular ones. Inhibitory effects of Curcumae Radix carbonisata-based carbon dots against liver fibrosis induced by carbon tetrachloride in mice. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation. Investigation of pharmacokinetics and immunogenicity of magnetosomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1