高原蛙越冬的生理生态学研究。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-05-01 DOI:10.1086/718764
Yonggang Niu, Qiang Chen, Kenneth B Storey, Linhong Teng, Xiangyong Li, Tisen Xu, Haiying Zhang
{"title":"高原蛙越冬的生理生态学研究。","authors":"Yonggang Niu,&nbsp;Qiang Chen,&nbsp;Kenneth B Storey,&nbsp;Linhong Teng,&nbsp;Xiangyong Li,&nbsp;Tisen Xu,&nbsp;Haiying Zhang","doi":"10.1086/718764","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractThe Xizang plateau frog, <i>Nanorana parkeri</i> (Anura: Dicroglossidae), enters a dormant state in the winter in response to seasonal cold and lack of food. To investigate the physiological and ecological characteristics of overwintering in this species, we measured habitat conditions (hibernacula temperatures, body temperature, and water quality variables), morphology, metabolite concentrations, total antioxidant capacity (T-AOC), and bacteria-killing ability (BKA) of plasma during summer and winter. We found that <i>N. parkeri</i> hibernates underwater at the bottom of ponds (10-20-cm depth). Dissolved oxygen content in the water decreases significantly (by 12%) in the winter compared with summer, suggesting that overwintering <i>N. parkeri</i> may experience hypoxia. Body mass, body mass index, hepatosomatic index, and hepatic glycogen concentration all increased significantly in winter-collected frogs as compared to summer-collected individuals, indicating that overwintering <i>N. parkeri</i> accumulates high fuel/energy reserves to support prolonged periods of hibernation. A significant reduction in glucose, urea, and lactate concentrations in most organs may be closely related to metabolic depression in overwintering <i>N. parkeri</i>. Liver lactate concentration rose significantly in winter-collected frogs, suggesting that anaerobic metabolism dominates when this species overwinters. The T-AOC of plasma showed a significant reduction in winter, suggesting a reduced need for antioxidant defenses. Oppositely, the BKA of plasma increased significantly in winter versus summer, indicating that innate immunity was enhanced during overwintering. In summary, these behavioral (migrating to caves), physiological, and biochemical adjustments may be key for the successful overwintering of this high-altitude frog.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Physiological Ecology of Winter Hibernation by the High-Altitude Frog <i>Nanorana parkeri</i>.\",\"authors\":\"Yonggang Niu,&nbsp;Qiang Chen,&nbsp;Kenneth B Storey,&nbsp;Linhong Teng,&nbsp;Xiangyong Li,&nbsp;Tisen Xu,&nbsp;Haiying Zhang\",\"doi\":\"10.1086/718764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractThe Xizang plateau frog, <i>Nanorana parkeri</i> (Anura: Dicroglossidae), enters a dormant state in the winter in response to seasonal cold and lack of food. To investigate the physiological and ecological characteristics of overwintering in this species, we measured habitat conditions (hibernacula temperatures, body temperature, and water quality variables), morphology, metabolite concentrations, total antioxidant capacity (T-AOC), and bacteria-killing ability (BKA) of plasma during summer and winter. We found that <i>N. parkeri</i> hibernates underwater at the bottom of ponds (10-20-cm depth). Dissolved oxygen content in the water decreases significantly (by 12%) in the winter compared with summer, suggesting that overwintering <i>N. parkeri</i> may experience hypoxia. Body mass, body mass index, hepatosomatic index, and hepatic glycogen concentration all increased significantly in winter-collected frogs as compared to summer-collected individuals, indicating that overwintering <i>N. parkeri</i> accumulates high fuel/energy reserves to support prolonged periods of hibernation. A significant reduction in glucose, urea, and lactate concentrations in most organs may be closely related to metabolic depression in overwintering <i>N. parkeri</i>. Liver lactate concentration rose significantly in winter-collected frogs, suggesting that anaerobic metabolism dominates when this species overwinters. The T-AOC of plasma showed a significant reduction in winter, suggesting a reduced need for antioxidant defenses. Oppositely, the BKA of plasma increased significantly in winter versus summer, indicating that innate immunity was enhanced during overwintering. In summary, these behavioral (migrating to caves), physiological, and biochemical adjustments may be key for the successful overwintering of this high-altitude frog.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/718764\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/718764","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

摘要西藏高原蛙(Nanorana parkeri)在冬季进入冬眠状态,以应对季节性寒冷和食物缺乏。为了研究该物种越冬的生理生态特征,我们在夏季和冬季测量了其栖息地条件(越冬温度、体温和水质变量)、形态、代谢物浓度、总抗氧化能力(T-AOC)和血浆杀菌能力(BKA)。我们发现,白僵菌在水下的池塘底部(10-20厘米深)冬眠。与夏季相比,冬季水中溶解氧含量明显下降(下降12%),这表明越冬的白蛉可能经历了缺氧。与夏季采集的蛙类相比,冬季采集的蛙类体重、体重指数、肝体指数和肝糖原浓度均显著增加,表明越冬的白氏N. parkeri积累了大量的燃料/能量储备,以支持长时间的冬眠。大多数器官中葡萄糖、尿素和乳酸浓度的显著降低可能与越冬白衣奈瑟菌的代谢抑制密切相关。在冬季采集的青蛙中,肝脏乳酸浓度显著升高,表明该物种在越冬时以无氧代谢为主。血浆中T-AOC在冬季显著降低,表明抗氧化防御需求降低。相反,血浆BKA在冬季明显高于夏季,表明越冬期间先天免疫增强。总之,这些行为(迁移到洞穴)、生理和生化的调整可能是这种高海拔青蛙成功越冬的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physiological Ecology of Winter Hibernation by the High-Altitude Frog Nanorana parkeri.

AbstractThe Xizang plateau frog, Nanorana parkeri (Anura: Dicroglossidae), enters a dormant state in the winter in response to seasonal cold and lack of food. To investigate the physiological and ecological characteristics of overwintering in this species, we measured habitat conditions (hibernacula temperatures, body temperature, and water quality variables), morphology, metabolite concentrations, total antioxidant capacity (T-AOC), and bacteria-killing ability (BKA) of plasma during summer and winter. We found that N. parkeri hibernates underwater at the bottom of ponds (10-20-cm depth). Dissolved oxygen content in the water decreases significantly (by 12%) in the winter compared with summer, suggesting that overwintering N. parkeri may experience hypoxia. Body mass, body mass index, hepatosomatic index, and hepatic glycogen concentration all increased significantly in winter-collected frogs as compared to summer-collected individuals, indicating that overwintering N. parkeri accumulates high fuel/energy reserves to support prolonged periods of hibernation. A significant reduction in glucose, urea, and lactate concentrations in most organs may be closely related to metabolic depression in overwintering N. parkeri. Liver lactate concentration rose significantly in winter-collected frogs, suggesting that anaerobic metabolism dominates when this species overwinters. The T-AOC of plasma showed a significant reduction in winter, suggesting a reduced need for antioxidant defenses. Oppositely, the BKA of plasma increased significantly in winter versus summer, indicating that innate immunity was enhanced during overwintering. In summary, these behavioral (migrating to caves), physiological, and biochemical adjustments may be key for the successful overwintering of this high-altitude frog.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1