NF-κB通路与人骨肉瘤细胞的致瘤表型密切相关。

IF 2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Journal of applied biomedicine Pub Date : 2021-12-01 Epub Date: 2021-09-24 DOI:10.32725/jab.2021.021
Bingyi Tan, Zenong Yuan, Qingyu Zhang, Xu Xiqiang, Jun Dong
{"title":"NF-κB通路与人骨肉瘤细胞的致瘤表型密切相关。","authors":"Bingyi Tan,&nbsp;Zenong Yuan,&nbsp;Qingyu Zhang,&nbsp;Xu Xiqiang,&nbsp;Jun Dong","doi":"10.32725/jab.2021.021","DOIUrl":null,"url":null,"abstract":"<p><p>NF-κB is activated in a variety of human cancers. However, its role in osteosarcoma (OS) remains unknown. Here, we have elucidated the implication of NF-κB in the oncogenic phenotype of OS tumor cells. We reported that activation of NF-κB was a common event in the human OS. Inhibition of NF-κB using inhibitor Bay 11-7085 repressed proliferation, survival, migration, and invasion but increased apoptosis in 143B and MG63 OS cells, indicating that NF-κB is critically implicated in the oncogenesis of OS. Notably, Bay 11-7085 not only inactivated NF-κB but also reduced the phosphorylation of AKT via its induction of PTEN, suggesting the existence of a novel NF-κB/PTEN/PI3K/AKT axis. In vivo, Bay 11-7085 suppressed tumor growth in the bone by targeting NF-κB and AKT. Interestingly, combined treatment with Bay 11-7085 and the PI3K inhibitor, LY294002, triggered an augmented antitumor effect. Our results demonstrate that NF-κB potentiates the growth and aggressiveness of OS. Pharmacological inhibition of NF-κB represents a promising therapy for the treatment of OS.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"19 4","pages":"190-201"},"PeriodicalIF":2.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The NF-κB pathway is critically implicated in the oncogenic phenotype of human osteosarcoma cells.\",\"authors\":\"Bingyi Tan,&nbsp;Zenong Yuan,&nbsp;Qingyu Zhang,&nbsp;Xu Xiqiang,&nbsp;Jun Dong\",\"doi\":\"10.32725/jab.2021.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NF-κB is activated in a variety of human cancers. However, its role in osteosarcoma (OS) remains unknown. Here, we have elucidated the implication of NF-κB in the oncogenic phenotype of OS tumor cells. We reported that activation of NF-κB was a common event in the human OS. Inhibition of NF-κB using inhibitor Bay 11-7085 repressed proliferation, survival, migration, and invasion but increased apoptosis in 143B and MG63 OS cells, indicating that NF-κB is critically implicated in the oncogenesis of OS. Notably, Bay 11-7085 not only inactivated NF-κB but also reduced the phosphorylation of AKT via its induction of PTEN, suggesting the existence of a novel NF-κB/PTEN/PI3K/AKT axis. In vivo, Bay 11-7085 suppressed tumor growth in the bone by targeting NF-κB and AKT. Interestingly, combined treatment with Bay 11-7085 and the PI3K inhibitor, LY294002, triggered an augmented antitumor effect. Our results demonstrate that NF-κB potentiates the growth and aggressiveness of OS. Pharmacological inhibition of NF-κB represents a promising therapy for the treatment of OS.</p>\",\"PeriodicalId\":14912,\"journal\":{\"name\":\"Journal of applied biomedicine\",\"volume\":\"19 4\",\"pages\":\"190-201\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.32725/jab.2021.021\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2021.021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2

摘要

NF-κB在多种人类癌症中被激活。然而,其在骨肉瘤(OS)中的作用尚不清楚。在这里,我们阐明了NF-κB在OS肿瘤细胞的致癌表型中的意义。我们报道了NF-κB的激活在人类OS中是一个常见的事件。使用Bay 11-7085抑制剂抑制NF-κB可抑制143B和MG63 OS细胞的增殖、存活、迁移和侵袭,但增加凋亡,表明NF-κB在OS的肿瘤发生中起关键作用。值得注意的是,Bay 11-7085不仅使NF-κB失活,还通过诱导PTEN降低了AKT的磷酸化,这表明存在一个新的NF-κB/PTEN/PI3K/AKT轴。在体内,Bay 11-7085通过靶向NF-κB和AKT抑制骨肿瘤生长。有趣的是,与Bay 11-7085和PI3K抑制剂LY294002联合治疗,引发了增强的抗肿瘤作用。我们的研究结果表明,NF-κB增强了OS的生长和侵袭性。药理抑制NF-κB是治疗OS的一种很有前景的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The NF-κB pathway is critically implicated in the oncogenic phenotype of human osteosarcoma cells.

NF-κB is activated in a variety of human cancers. However, its role in osteosarcoma (OS) remains unknown. Here, we have elucidated the implication of NF-κB in the oncogenic phenotype of OS tumor cells. We reported that activation of NF-κB was a common event in the human OS. Inhibition of NF-κB using inhibitor Bay 11-7085 repressed proliferation, survival, migration, and invasion but increased apoptosis in 143B and MG63 OS cells, indicating that NF-κB is critically implicated in the oncogenesis of OS. Notably, Bay 11-7085 not only inactivated NF-κB but also reduced the phosphorylation of AKT via its induction of PTEN, suggesting the existence of a novel NF-κB/PTEN/PI3K/AKT axis. In vivo, Bay 11-7085 suppressed tumor growth in the bone by targeting NF-κB and AKT. Interestingly, combined treatment with Bay 11-7085 and the PI3K inhibitor, LY294002, triggered an augmented antitumor effect. Our results demonstrate that NF-κB potentiates the growth and aggressiveness of OS. Pharmacological inhibition of NF-κB represents a promising therapy for the treatment of OS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of applied biomedicine
Journal of applied biomedicine PHARMACOLOGY & PHARMACY-
CiteScore
2.40
自引率
7.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines. Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.
期刊最新文献
Anti-NMDAR1 antibody impairs dendritic branching in immature cultured neurons. Astragaloside IV confronts amyloid-beta-induced astrocyte senescence via hsp90aa1. In vitro biological activities of Calamintha nepeta L. aqueous extracts. Olfactory event-related potentials (OERPs) and trigeminal event-related potentials (TERPs) in subjects after Covid-19 infection: single-center prospective study. Salivary glands - a new site of Helicobacter pylori occurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1