{"title":"用于 Covid-19 筛选和定量的 PSO-SVM 混合算法。","authors":"M Sahaya Sheela, C A Arun","doi":"10.1007/s41870-021-00856-y","DOIUrl":null,"url":null,"abstract":"<p><p>Corona Virus Disease (COVID) 19 has shaken the earth at its root and the devastation has increased the diagnostic burden of radiologists by large. At this crucial juncture, Artificial Intelligence (AI) will go a long way in decreasing the workload of physicians working in the outbreak zone, aiding them to accurately diagnose the new disease. In this work, a hybrid Particle Swarm Optimization-Support Vector Machine based AI algorithm is deployed to analyze the Computed Tomography images automatically providing a high probability in determining the presence of pneumonia due to COVID19. This paper presents a model for training the system to segregate and classify the presence of pneumonia which will in turn save around 50% of the time frame for physicians. This will be especially useful in places of outbreaks where a team of people are working together with the aid of artificial intelligence and/or medical background. The AI incorporated system was distributed in all areas of across the globe. It has been observed that challenges such as data security, testing time effectiveness of model, data discrepancy etc. were positively handled using the deployed system. Moreover, since the AI integrated system identifies the infected patients immediately physicians can confirm the infection and segregate the patients at the right period. A total of 200 training cases have been observed of which 150 were identified to be infected. The proposed work shows specificity of 0.85, a sensitivity of 0.956 and an accuracy of 95.78%.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":"14 4","pages":"2049-2056"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752331/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid PSO-SVM algorithm for Covid-19 screening and quantification.\",\"authors\":\"M Sahaya Sheela, C A Arun\",\"doi\":\"10.1007/s41870-021-00856-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Corona Virus Disease (COVID) 19 has shaken the earth at its root and the devastation has increased the diagnostic burden of radiologists by large. At this crucial juncture, Artificial Intelligence (AI) will go a long way in decreasing the workload of physicians working in the outbreak zone, aiding them to accurately diagnose the new disease. In this work, a hybrid Particle Swarm Optimization-Support Vector Machine based AI algorithm is deployed to analyze the Computed Tomography images automatically providing a high probability in determining the presence of pneumonia due to COVID19. This paper presents a model for training the system to segregate and classify the presence of pneumonia which will in turn save around 50% of the time frame for physicians. This will be especially useful in places of outbreaks where a team of people are working together with the aid of artificial intelligence and/or medical background. The AI incorporated system was distributed in all areas of across the globe. It has been observed that challenges such as data security, testing time effectiveness of model, data discrepancy etc. were positively handled using the deployed system. Moreover, since the AI integrated system identifies the infected patients immediately physicians can confirm the infection and segregate the patients at the right period. A total of 200 training cases have been observed of which 150 were identified to be infected. The proposed work shows specificity of 0.85, a sensitivity of 0.956 and an accuracy of 95.78%.</p>\",\"PeriodicalId\":73455,\"journal\":{\"name\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"volume\":\"14 4\",\"pages\":\"2049-2056\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752331/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-021-00856-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-021-00856-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid PSO-SVM algorithm for Covid-19 screening and quantification.
Corona Virus Disease (COVID) 19 has shaken the earth at its root and the devastation has increased the diagnostic burden of radiologists by large. At this crucial juncture, Artificial Intelligence (AI) will go a long way in decreasing the workload of physicians working in the outbreak zone, aiding them to accurately diagnose the new disease. In this work, a hybrid Particle Swarm Optimization-Support Vector Machine based AI algorithm is deployed to analyze the Computed Tomography images automatically providing a high probability in determining the presence of pneumonia due to COVID19. This paper presents a model for training the system to segregate and classify the presence of pneumonia which will in turn save around 50% of the time frame for physicians. This will be especially useful in places of outbreaks where a team of people are working together with the aid of artificial intelligence and/or medical background. The AI incorporated system was distributed in all areas of across the globe. It has been observed that challenges such as data security, testing time effectiveness of model, data discrepancy etc. were positively handled using the deployed system. Moreover, since the AI integrated system identifies the infected patients immediately physicians can confirm the infection and segregate the patients at the right period. A total of 200 training cases have been observed of which 150 were identified to be infected. The proposed work shows specificity of 0.85, a sensitivity of 0.956 and an accuracy of 95.78%.