Mahmoud Soliman Abdel-Hamid, Amr Fouda, Hesham Kamal Abo El-Ela, Abbas A El-Ghamry, Saad El-Din Hassan
{"title":"从普通胸腺根中分离的细菌内生菌对植物生长的促进作用及其作为生物肥料提高挥发油含量的作用。","authors":"Mahmoud Soliman Abdel-Hamid, Amr Fouda, Hesham Kamal Abo El-Ela, Abbas A El-Ghamry, Saad El-Din Hassan","doi":"10.1515/bmc-2021-0019","DOIUrl":null,"url":null,"abstract":"<p><p>The main objective of the current study was to improve the essential oil contents of <i>Thymus vulgaris</i> L. using bio-inoculation with bacterial endophytes. Therefore, out of fourteen endophytic bacterial isolates obtained from roots of <i>T. vulgaris</i>, five isolates were selected based on the highest nitrogen-fixation and phosphate solubilization activity and identified as: <i>Bacillus haynesii</i> T9r, <i>Citrobacter farmeri</i> T10r, <i>Bacillus licheniformis</i> T11r, <i>Bacillus velezensis</i> T12r, and <i>Bacillus velezensis</i> T13r. These five strains have been recorded as ammonia, hydrogen cyanide (HCN), siderophores, and indole-3-acetic acid (IAA) producers. These strains have the efficacy to fix-nitrogen by reduction of acetylene with values of 82.133±1.4-346.6±1.4 n-mole-C<sub>2</sub>H<sub>4</sub>/ml/24 h. The IAA, gibberellic acid, abscisic acid, benzyl, kinten, and ziaten production were confirmed using HPLC. Two strains of T11r and T13r showed the highest plant growth-promoting properties and were selected for bio-inoculation of <i>T. vulgaris</i> individually or in a consortium with different mineral fertilization doses (0, 50, 75, and 100%) under field conditions. The highest growth performance was attained with the endophytic consortium (T11r+T13r) in the presence of 100% mineral fertilization. The GC-MS analysis of thyme oil contents showed the presence of 23 various compounds with varying percentages and the thymol fraction represented the highest percentages (39.1%) in the presence of the bacterial consortium.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"175-196"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Plant growth-promoting properties of bacterial endophytes isolated from roots of <i>Thymus vulgaris</i> L. and investigate their role as biofertilizers to enhance the essential oil contents.\",\"authors\":\"Mahmoud Soliman Abdel-Hamid, Amr Fouda, Hesham Kamal Abo El-Ela, Abbas A El-Ghamry, Saad El-Din Hassan\",\"doi\":\"10.1515/bmc-2021-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main objective of the current study was to improve the essential oil contents of <i>Thymus vulgaris</i> L. using bio-inoculation with bacterial endophytes. Therefore, out of fourteen endophytic bacterial isolates obtained from roots of <i>T. vulgaris</i>, five isolates were selected based on the highest nitrogen-fixation and phosphate solubilization activity and identified as: <i>Bacillus haynesii</i> T9r, <i>Citrobacter farmeri</i> T10r, <i>Bacillus licheniformis</i> T11r, <i>Bacillus velezensis</i> T12r, and <i>Bacillus velezensis</i> T13r. These five strains have been recorded as ammonia, hydrogen cyanide (HCN), siderophores, and indole-3-acetic acid (IAA) producers. These strains have the efficacy to fix-nitrogen by reduction of acetylene with values of 82.133±1.4-346.6±1.4 n-mole-C<sub>2</sub>H<sub>4</sub>/ml/24 h. The IAA, gibberellic acid, abscisic acid, benzyl, kinten, and ziaten production were confirmed using HPLC. Two strains of T11r and T13r showed the highest plant growth-promoting properties and were selected for bio-inoculation of <i>T. vulgaris</i> individually or in a consortium with different mineral fertilization doses (0, 50, 75, and 100%) under field conditions. The highest growth performance was attained with the endophytic consortium (T11r+T13r) in the presence of 100% mineral fertilization. The GC-MS analysis of thyme oil contents showed the presence of 23 various compounds with varying percentages and the thymol fraction represented the highest percentages (39.1%) in the presence of the bacterial consortium.</p>\",\"PeriodicalId\":38392,\"journal\":{\"name\":\"Biomolecular Concepts\",\"volume\":\" \",\"pages\":\"175-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular Concepts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmc-2021-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2021-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Plant growth-promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents.
The main objective of the current study was to improve the essential oil contents of Thymus vulgaris L. using bio-inoculation with bacterial endophytes. Therefore, out of fourteen endophytic bacterial isolates obtained from roots of T. vulgaris, five isolates were selected based on the highest nitrogen-fixation and phosphate solubilization activity and identified as: Bacillus haynesii T9r, Citrobacter farmeri T10r, Bacillus licheniformis T11r, Bacillus velezensis T12r, and Bacillus velezensis T13r. These five strains have been recorded as ammonia, hydrogen cyanide (HCN), siderophores, and indole-3-acetic acid (IAA) producers. These strains have the efficacy to fix-nitrogen by reduction of acetylene with values of 82.133±1.4-346.6±1.4 n-mole-C2H4/ml/24 h. The IAA, gibberellic acid, abscisic acid, benzyl, kinten, and ziaten production were confirmed using HPLC. Two strains of T11r and T13r showed the highest plant growth-promoting properties and were selected for bio-inoculation of T. vulgaris individually or in a consortium with different mineral fertilization doses (0, 50, 75, and 100%) under field conditions. The highest growth performance was attained with the endophytic consortium (T11r+T13r) in the presence of 100% mineral fertilization. The GC-MS analysis of thyme oil contents showed the presence of 23 various compounds with varying percentages and the thymol fraction represented the highest percentages (39.1%) in the presence of the bacterial consortium.
Biomolecular ConceptsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍:
BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.