Leandro Donisi, Edda Maria Capodaglio, Federica Amitrano, Giuseppe Cesarelli, Gaetano Pagano, Giovanni D'Addio
{"title":"基于惯性数据特征估计升力的多元线性回归方法。","authors":"Leandro Donisi, Edda Maria Capodaglio, Federica Amitrano, Giuseppe Cesarelli, Gaetano Pagano, Giovanni D'Addio","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Work-related musculoskeletal disorders are among the main occupational health problems. Substantial evidence has shown that work-related physical risk factors are the main source of low back complaints, particularly affecting heavy and repetitive manual lifting activities. The aim of the study is, during load lifting tasks, to explore the correlation between the time domain features extracted from the acceleration and angular velocity signals of the performing subject and the load lifted, and to explore the feasibility of a multiple linear regression model to predict the lifted load. The acceleration and angular velocity signals were acquired along the three directions of space by means of an inertial sensor placed on the subject's chest, during lifting activities with load gradually increased by 1 kg from 0 kg to 18 kg. Successively three time-domain features (Root Mean Square, Standard Deviation and MinMax value) were extracted from the acquired signals. First a correlation analysis was carried out between each individual feature and the load lifted (calculating r); then the time-domain features that proved most representative (strong correlation) were used to create a multiple linear regression model (calculating R-square). The statistical analysis was carried out by means of the Pearson correlation and multiple linear regression model was fed with the most informative time-domain features according to the correlation analysis. The correlation analysis showed a strong correlation (r > 0,7) between six features (three extracted from z-axes acceleration and three extracted from y-axes angular velocity) and the lifted load. The predictive multiple linear regression model, fed with these six features achieved a Rsquare greater than 0,9.The study demonstrated that the proposed combination of kinematic features and a multiple regression model represents a valid approach to automatically calculate the load lifted based on raw signals obtained by means of an inertial sensor placed on the chest. The results confirm the potential application of this methodology to indirectly monitor the load lifted by workers during their activity.</p>","PeriodicalId":12674,"journal":{"name":"Giornale italiano di medicina del lavoro ed ergonomia","volume":"43 4","pages":"373-378"},"PeriodicalIF":0.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiple linear regression approach to extimate lifted load from features extracted from inertial data.\",\"authors\":\"Leandro Donisi, Edda Maria Capodaglio, Federica Amitrano, Giuseppe Cesarelli, Gaetano Pagano, Giovanni D'Addio\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Work-related musculoskeletal disorders are among the main occupational health problems. Substantial evidence has shown that work-related physical risk factors are the main source of low back complaints, particularly affecting heavy and repetitive manual lifting activities. The aim of the study is, during load lifting tasks, to explore the correlation between the time domain features extracted from the acceleration and angular velocity signals of the performing subject and the load lifted, and to explore the feasibility of a multiple linear regression model to predict the lifted load. The acceleration and angular velocity signals were acquired along the three directions of space by means of an inertial sensor placed on the subject's chest, during lifting activities with load gradually increased by 1 kg from 0 kg to 18 kg. Successively three time-domain features (Root Mean Square, Standard Deviation and MinMax value) were extracted from the acquired signals. First a correlation analysis was carried out between each individual feature and the load lifted (calculating r); then the time-domain features that proved most representative (strong correlation) were used to create a multiple linear regression model (calculating R-square). The statistical analysis was carried out by means of the Pearson correlation and multiple linear regression model was fed with the most informative time-domain features according to the correlation analysis. The correlation analysis showed a strong correlation (r > 0,7) between six features (three extracted from z-axes acceleration and three extracted from y-axes angular velocity) and the lifted load. The predictive multiple linear regression model, fed with these six features achieved a Rsquare greater than 0,9.The study demonstrated that the proposed combination of kinematic features and a multiple regression model represents a valid approach to automatically calculate the load lifted based on raw signals obtained by means of an inertial sensor placed on the chest. The results confirm the potential application of this methodology to indirectly monitor the load lifted by workers during their activity.</p>\",\"PeriodicalId\":12674,\"journal\":{\"name\":\"Giornale italiano di medicina del lavoro ed ergonomia\",\"volume\":\"43 4\",\"pages\":\"373-378\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Giornale italiano di medicina del lavoro ed ergonomia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Giornale italiano di medicina del lavoro ed ergonomia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
A multiple linear regression approach to extimate lifted load from features extracted from inertial data.
Summary: Work-related musculoskeletal disorders are among the main occupational health problems. Substantial evidence has shown that work-related physical risk factors are the main source of low back complaints, particularly affecting heavy and repetitive manual lifting activities. The aim of the study is, during load lifting tasks, to explore the correlation between the time domain features extracted from the acceleration and angular velocity signals of the performing subject and the load lifted, and to explore the feasibility of a multiple linear regression model to predict the lifted load. The acceleration and angular velocity signals were acquired along the three directions of space by means of an inertial sensor placed on the subject's chest, during lifting activities with load gradually increased by 1 kg from 0 kg to 18 kg. Successively three time-domain features (Root Mean Square, Standard Deviation and MinMax value) were extracted from the acquired signals. First a correlation analysis was carried out between each individual feature and the load lifted (calculating r); then the time-domain features that proved most representative (strong correlation) were used to create a multiple linear regression model (calculating R-square). The statistical analysis was carried out by means of the Pearson correlation and multiple linear regression model was fed with the most informative time-domain features according to the correlation analysis. The correlation analysis showed a strong correlation (r > 0,7) between six features (three extracted from z-axes acceleration and three extracted from y-axes angular velocity) and the lifted load. The predictive multiple linear regression model, fed with these six features achieved a Rsquare greater than 0,9.The study demonstrated that the proposed combination of kinematic features and a multiple regression model represents a valid approach to automatically calculate the load lifted based on raw signals obtained by means of an inertial sensor placed on the chest. The results confirm the potential application of this methodology to indirectly monitor the load lifted by workers during their activity.