{"title":"直接推理和概率论的归纳法。","authors":"Jon Williamson","doi":"10.1007/s10838-021-09584-0","DOIUrl":null,"url":null,"abstract":"<p><p>Schurz (2019, ch. 4) argues that probabilistic accounts of induction fail. In particular, he criticises probabilistic accounts of induction that appeal to direct inference principles, including subjective Bayesian approaches (e.g., Howson 2000) and objective Bayesian approaches (see, e.g., Williamson 2017). In this paper, I argue that Schurz' preferred direct inference principle, namely Reichenbach's Principle of the Narrowest Reference Class, faces formidable problems in a standard probabilistic setting. Furthermore, the main alternative direct inference principle, Lewis' Principal Principle, is also hard to reconcile with standard probabilism. So, I argue, standard probabilistic approaches cannot appeal to direct inference to explicate the logic of induction. However, I go on to defend a non-standard objective Bayesian account of induction: I argue that this approach can both accommodate direct inference and provide a viable account of the logic of induction. I then defend this account against Schurz' criticisms.</p>","PeriodicalId":73570,"journal":{"name":"Journal for general philosophy of science = Zeitschrift fur allgemeine Wissenschaftstheorie","volume":" ","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761537/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct Inference and Probabilistic Accounts of Induction.\",\"authors\":\"Jon Williamson\",\"doi\":\"10.1007/s10838-021-09584-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schurz (2019, ch. 4) argues that probabilistic accounts of induction fail. In particular, he criticises probabilistic accounts of induction that appeal to direct inference principles, including subjective Bayesian approaches (e.g., Howson 2000) and objective Bayesian approaches (see, e.g., Williamson 2017). In this paper, I argue that Schurz' preferred direct inference principle, namely Reichenbach's Principle of the Narrowest Reference Class, faces formidable problems in a standard probabilistic setting. Furthermore, the main alternative direct inference principle, Lewis' Principal Principle, is also hard to reconcile with standard probabilism. So, I argue, standard probabilistic approaches cannot appeal to direct inference to explicate the logic of induction. However, I go on to defend a non-standard objective Bayesian account of induction: I argue that this approach can both accommodate direct inference and provide a viable account of the logic of induction. I then defend this account against Schurz' criticisms.</p>\",\"PeriodicalId\":73570,\"journal\":{\"name\":\"Journal for general philosophy of science = Zeitschrift fur allgemeine Wissenschaftstheorie\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761537/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for general philosophy of science = Zeitschrift fur allgemeine Wissenschaftstheorie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10838-021-09584-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for general philosophy of science = Zeitschrift fur allgemeine Wissenschaftstheorie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10838-021-09584-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

舒尔茨(2019,第4章)认为归纳法的概率论论述是失败的。他特别批评了那些诉诸直接推理原则的概率归纳法,包括主观贝叶斯方法(如豪森,2000)和客观贝叶斯方法(如威廉姆森,2017)。在本文中,我认为舒尔茨偏好的直接推理原则,即莱辛巴赫的最窄参考类原则,在标准概率论环境中面临着巨大的问题。此外,主要的替代直接推理原则,即刘易斯的主要原则,也很难与标准概率论相协调。因此,我认为,标准概率论方法不能诉诸直接推论来解释归纳逻辑。然而,我接着为一种非标准的客观贝叶斯归纳法辩护:我认为,这种方法既能容纳直接推论,又能为归纳逻辑提供可行的解释。然后,我将针对舒尔茨的批评为这一解释进行辩护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct Inference and Probabilistic Accounts of Induction.

Schurz (2019, ch. 4) argues that probabilistic accounts of induction fail. In particular, he criticises probabilistic accounts of induction that appeal to direct inference principles, including subjective Bayesian approaches (e.g., Howson 2000) and objective Bayesian approaches (see, e.g., Williamson 2017). In this paper, I argue that Schurz' preferred direct inference principle, namely Reichenbach's Principle of the Narrowest Reference Class, faces formidable problems in a standard probabilistic setting. Furthermore, the main alternative direct inference principle, Lewis' Principal Principle, is also hard to reconcile with standard probabilism. So, I argue, standard probabilistic approaches cannot appeal to direct inference to explicate the logic of induction. However, I go on to defend a non-standard objective Bayesian account of induction: I argue that this approach can both accommodate direct inference and provide a viable account of the logic of induction. I then defend this account against Schurz' criticisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Otto Neurath's Scientific Utopianism Revisited-A Refined Model for Utopias in Thought Experiments. Science, Values, and the New Demarcation Problem. Does Meta-induction Justify Induction: Or Maybe Something Else? Direct Inference and Probabilistic Accounts of Induction. Revisiting the Basic/Applied Science Distinction: The Significance of Urgent Science for Science Funding Policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1