IF 1.8 3区 医学Q4 BIOCHEMISTRY & MOLECULAR BIOLOGYMolecular VisionPub Date : 2021-11-20eCollection Date: 2021-01-01
Wenjie Liu, Sruthi Priya Mohan, Nareshkumar Ragavachetty Nagaraj, Shyam Sundar Jaganathan, Yi Wen, Sharada Ramasubramanyan, Joseph Irudayaraj
{"title":"RPE细胞中通过DNMT和TET与地塞米松磷酸钠相关的表观遗传改变。","authors":"Wenjie Liu, Sruthi Priya Mohan, Nareshkumar Ragavachetty Nagaraj, Shyam Sundar Jaganathan, Yi Wen, Sharada Ramasubramanyan, Joseph Irudayaraj","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To elucidate the mechanism behind epigenetic alteration associated with dexamethasone (DEX) sodium phosphate treatment.</p><p><strong>Methods: </strong>We performed enzyme-linked immunosorbent assay to quantify changes in global DNA methylation and hydroxymethylation, quantitative real-time PCR (qRT-PCR) of the DNA methylation- and hydroxymethylation-related gene, in vitro DNA methyltransferase (DNMT) enzymatic activity assays with purified DNMTs, and DNA hydroxymethylation pattern with super-resolution imaging.</p><p><strong>Results: </strong>We identified global DNA hypomethylation and hyper-hydroxymethylation upon DEX treatment, associated with aberrant mRNA expression levels of DNMT and ten-eleven translocation (TET) proteins. Additionally, DEX exposure could directly hinder DNMT activities.</p><p><strong>Conclusions: </strong>We showed that DEX-induced epigenetic alterations are linked to aberrant DNMT and TET expression, potentially through an essential role of DNMT.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"27 ","pages":"643-655"},"PeriodicalIF":1.8000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e3/16/mv-v27-643.PMC8645185.pdf","citationCount":"0","resultStr":"{\"title\":\"Epigenetic alterations associated with dexamethasone sodium phosphate through DNMT and TET in RPE cells.\",\"authors\":\"Wenjie Liu, Sruthi Priya Mohan, Nareshkumar Ragavachetty Nagaraj, Shyam Sundar Jaganathan, Yi Wen, Sharada Ramasubramanyan, Joseph Irudayaraj\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To elucidate the mechanism behind epigenetic alteration associated with dexamethasone (DEX) sodium phosphate treatment.</p><p><strong>Methods: </strong>We performed enzyme-linked immunosorbent assay to quantify changes in global DNA methylation and hydroxymethylation, quantitative real-time PCR (qRT-PCR) of the DNA methylation- and hydroxymethylation-related gene, in vitro DNA methyltransferase (DNMT) enzymatic activity assays with purified DNMTs, and DNA hydroxymethylation pattern with super-resolution imaging.</p><p><strong>Results: </strong>We identified global DNA hypomethylation and hyper-hydroxymethylation upon DEX treatment, associated with aberrant mRNA expression levels of DNMT and ten-eleven translocation (TET) proteins. Additionally, DEX exposure could directly hinder DNMT activities.</p><p><strong>Conclusions: </strong>We showed that DEX-induced epigenetic alterations are linked to aberrant DNMT and TET expression, potentially through an essential role of DNMT.</p>\",\"PeriodicalId\":18866,\"journal\":{\"name\":\"Molecular Vision\",\"volume\":\"27 \",\"pages\":\"643-655\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e3/16/mv-v27-643.PMC8645185.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Epigenetic alterations associated with dexamethasone sodium phosphate through DNMT and TET in RPE cells.
Purpose: To elucidate the mechanism behind epigenetic alteration associated with dexamethasone (DEX) sodium phosphate treatment.
Methods: We performed enzyme-linked immunosorbent assay to quantify changes in global DNA methylation and hydroxymethylation, quantitative real-time PCR (qRT-PCR) of the DNA methylation- and hydroxymethylation-related gene, in vitro DNA methyltransferase (DNMT) enzymatic activity assays with purified DNMTs, and DNA hydroxymethylation pattern with super-resolution imaging.
Results: We identified global DNA hypomethylation and hyper-hydroxymethylation upon DEX treatment, associated with aberrant mRNA expression levels of DNMT and ten-eleven translocation (TET) proteins. Additionally, DEX exposure could directly hinder DNMT activities.
Conclusions: We showed that DEX-induced epigenetic alterations are linked to aberrant DNMT and TET expression, potentially through an essential role of DNMT.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.