{"title":"梨属植物顶端花粉管的解剖与超微观察。","authors":"Chenxi Shi, Demian Wang, Yaqin Guan, Haiyong Qu","doi":"10.1007/s00497-021-00433-0","DOIUrl":null,"url":null,"abstract":"<p><p>The pollen tube is ideal for studying cell polar growth, and observing the ultrastructure of the pollen tube tip using transmission electron microscopy (TEM) is the primary method for studying pollen tube growth. The preparation of ultrathin sections of the pollen tube tip sample is important for its successful microscopic observation. The direction of pollen tube growth in vitro is irregular, and it is difficult to dissect the tip of the pollen tube during ultrathin sectioning. Here, we used two methods to efficiently obtain an ultrathin section of the pollen tube tip of Pyrus. In the first method, laser micro-cutting was used to obtain the pollen tube tip, followed by ultrathin sectioning. In the other method, the pollen tubes were cultured in the same growth direction, followed by ultrathin sectioning. Ultrathin sections, which were observed via TEM, showed typical characteristics of the pollen tube tip, such as dense vesicles, numerous mitochondria, and secretory vesicles of the Golgi. We concluded that these two methods are effective in pollen tube tip sample preparation for ultrathin sectioning and provide the foundation for observing the ultrastructure of pollen tube tips.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissection and ultramicroscopic observation of an apical pollen tube of Pyrus.\",\"authors\":\"Chenxi Shi, Demian Wang, Yaqin Guan, Haiyong Qu\",\"doi\":\"10.1007/s00497-021-00433-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pollen tube is ideal for studying cell polar growth, and observing the ultrastructure of the pollen tube tip using transmission electron microscopy (TEM) is the primary method for studying pollen tube growth. The preparation of ultrathin sections of the pollen tube tip sample is important for its successful microscopic observation. The direction of pollen tube growth in vitro is irregular, and it is difficult to dissect the tip of the pollen tube during ultrathin sectioning. Here, we used two methods to efficiently obtain an ultrathin section of the pollen tube tip of Pyrus. In the first method, laser micro-cutting was used to obtain the pollen tube tip, followed by ultrathin sectioning. In the other method, the pollen tubes were cultured in the same growth direction, followed by ultrathin sectioning. Ultrathin sections, which were observed via TEM, showed typical characteristics of the pollen tube tip, such as dense vesicles, numerous mitochondria, and secretory vesicles of the Golgi. We concluded that these two methods are effective in pollen tube tip sample preparation for ultrathin sectioning and provide the foundation for observing the ultrastructure of pollen tube tips.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00497-021-00433-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-021-00433-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dissection and ultramicroscopic observation of an apical pollen tube of Pyrus.
The pollen tube is ideal for studying cell polar growth, and observing the ultrastructure of the pollen tube tip using transmission electron microscopy (TEM) is the primary method for studying pollen tube growth. The preparation of ultrathin sections of the pollen tube tip sample is important for its successful microscopic observation. The direction of pollen tube growth in vitro is irregular, and it is difficult to dissect the tip of the pollen tube during ultrathin sectioning. Here, we used two methods to efficiently obtain an ultrathin section of the pollen tube tip of Pyrus. In the first method, laser micro-cutting was used to obtain the pollen tube tip, followed by ultrathin sectioning. In the other method, the pollen tubes were cultured in the same growth direction, followed by ultrathin sectioning. Ultrathin sections, which were observed via TEM, showed typical characteristics of the pollen tube tip, such as dense vesicles, numerous mitochondria, and secretory vesicles of the Golgi. We concluded that these two methods are effective in pollen tube tip sample preparation for ultrathin sectioning and provide the foundation for observing the ultrastructure of pollen tube tips.