Michael D Johnston, Tanya E Whiteside, Michelle E Allen, David M Kurtz
{"title":"从天然成分实验室动物日粮中分离出的产气荚膜梭状芽孢杆菌菌株的毒力特征。","authors":"Michael D Johnston, Tanya E Whiteside, Michelle E Allen, David M Kurtz","doi":"10.30802/AALAS-JAALAS-21-000066","DOIUrl":null,"url":null,"abstract":"<p><p>Clostridium perfringens is an anaerobic, gram-positive, spore-forming bacterium that ubiquitously inhabits a wide varietyof natural environments including the gastrointestinal tract of humans and animals. C. perfringens is an opportunistic enteropathogen capable of producing at least 20 different toxins in various combinations. Strains of C. perfringens are currentlycategorized into 7 toxinotypes (A, B, C, D, E, F, and G) based on the presence or absence of 6 typing-toxins (α, β, epsilon, iota, enterotoxin, and netB). Each toxinotype is associated with specific histotoxic and enteric diseases. Spontaneous enteritis due to C. perfringens has been reported in laboratory animals; however, the source of the bacteria was unknown. The Quality Assurance Laboratory (QAL) at the National Institute of Environmental Health Sciences (NIEHS) routinely screens incoming animal feeds for aerobic, enteric pathogens, such as Salmonella spp. and E. coli. Recently, QAL incorporated anaerobic screening of incoming animal feeds. To date, the lab has isolated numerous Clostridium species, including C. perfringens, from 23 lots ofnatural ingredient laboratory animal diets. Published reports of C. perfringens isolation from laboratory animal feeds couldnot be found in the literature. Therefore, we performed a toxin profile screen of our isolated strains of C. perfringens usingPCR to determine which toxinotypes were present in the laboratory animal diets. Our results showed that most C. perfringens strains we isolated from the laboratory animal feed were toxinotype A with most strains also possessing the theta toxin. Two of the C. perfringens strains also possessed the β toxin. Our results demonstrated the presence of C. perfringens in nonsterile, natural ingredient feeds for laboratory animals which could serve as a source of this opportunistic pathogen.</p>","PeriodicalId":50019,"journal":{"name":"Journal of the American Association for Laboratory Animal Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxigenic Profile of Clostridium perfringens Strains Isolated from Natural Ingredient Laboratory Animal Diets.\",\"authors\":\"Michael D Johnston, Tanya E Whiteside, Michelle E Allen, David M Kurtz\",\"doi\":\"10.30802/AALAS-JAALAS-21-000066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clostridium perfringens is an anaerobic, gram-positive, spore-forming bacterium that ubiquitously inhabits a wide varietyof natural environments including the gastrointestinal tract of humans and animals. C. perfringens is an opportunistic enteropathogen capable of producing at least 20 different toxins in various combinations. Strains of C. perfringens are currentlycategorized into 7 toxinotypes (A, B, C, D, E, F, and G) based on the presence or absence of 6 typing-toxins (α, β, epsilon, iota, enterotoxin, and netB). Each toxinotype is associated with specific histotoxic and enteric diseases. Spontaneous enteritis due to C. perfringens has been reported in laboratory animals; however, the source of the bacteria was unknown. The Quality Assurance Laboratory (QAL) at the National Institute of Environmental Health Sciences (NIEHS) routinely screens incoming animal feeds for aerobic, enteric pathogens, such as Salmonella spp. and E. coli. Recently, QAL incorporated anaerobic screening of incoming animal feeds. To date, the lab has isolated numerous Clostridium species, including C. perfringens, from 23 lots ofnatural ingredient laboratory animal diets. Published reports of C. perfringens isolation from laboratory animal feeds couldnot be found in the literature. Therefore, we performed a toxin profile screen of our isolated strains of C. perfringens usingPCR to determine which toxinotypes were present in the laboratory animal diets. Our results showed that most C. perfringens strains we isolated from the laboratory animal feed were toxinotype A with most strains also possessing the theta toxin. Two of the C. perfringens strains also possessed the β toxin. Our results demonstrated the presence of C. perfringens in nonsterile, natural ingredient feeds for laboratory animals which could serve as a source of this opportunistic pathogen.</p>\",\"PeriodicalId\":50019,\"journal\":{\"name\":\"Journal of the American Association for Laboratory Animal Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Association for Laboratory Animal Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.30802/AALAS-JAALAS-21-000066\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Association for Laboratory Animal Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-JAALAS-21-000066","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Toxigenic Profile of Clostridium perfringens Strains Isolated from Natural Ingredient Laboratory Animal Diets.
Clostridium perfringens is an anaerobic, gram-positive, spore-forming bacterium that ubiquitously inhabits a wide varietyof natural environments including the gastrointestinal tract of humans and animals. C. perfringens is an opportunistic enteropathogen capable of producing at least 20 different toxins in various combinations. Strains of C. perfringens are currentlycategorized into 7 toxinotypes (A, B, C, D, E, F, and G) based on the presence or absence of 6 typing-toxins (α, β, epsilon, iota, enterotoxin, and netB). Each toxinotype is associated with specific histotoxic and enteric diseases. Spontaneous enteritis due to C. perfringens has been reported in laboratory animals; however, the source of the bacteria was unknown. The Quality Assurance Laboratory (QAL) at the National Institute of Environmental Health Sciences (NIEHS) routinely screens incoming animal feeds for aerobic, enteric pathogens, such as Salmonella spp. and E. coli. Recently, QAL incorporated anaerobic screening of incoming animal feeds. To date, the lab has isolated numerous Clostridium species, including C. perfringens, from 23 lots ofnatural ingredient laboratory animal diets. Published reports of C. perfringens isolation from laboratory animal feeds couldnot be found in the literature. Therefore, we performed a toxin profile screen of our isolated strains of C. perfringens usingPCR to determine which toxinotypes were present in the laboratory animal diets. Our results showed that most C. perfringens strains we isolated from the laboratory animal feed were toxinotype A with most strains also possessing the theta toxin. Two of the C. perfringens strains also possessed the β toxin. Our results demonstrated the presence of C. perfringens in nonsterile, natural ingredient feeds for laboratory animals which could serve as a source of this opportunistic pathogen.
期刊介绍:
The Journal of the American Association for Laboratory Animal Science (JAALAS) serves as an official communication vehicle for the American Association for Laboratory Animal Science (AALAS). The journal includes a section of refereed articles and a section of AALAS association news.
All signed articles, including refereed articles and book reviews, editorials, committee reports, and news and commentary, reflect the individual views of the authors and are not official views of AALAS. The mission of the refereed section of the journal is to disseminate high-quality, peer-reviewed information on animal biology, technology, facility operations, management, and compliance as relevant to the AALAS membership. JAALAS accepts research reports (data-based) or scholarly reports (literature-based), with the caveat that all articles, including solicited manuscripts, must include appropriate references and must undergo peer review.