{"title":"单晶的45Sc-NMR定量四极性相互作用","authors":"Otto E.O. Zeman, Thomas Bräuniger","doi":"10.1016/j.ssnmr.2022.101775","DOIUrl":null,"url":null,"abstract":"<div><p><span>Single crystals of the compound [</span><span><math><msub><mrow><mrow><mo>{</mo><mrow><mi>S</mi><mi>c</mi><msub><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow><mo>)</mo></mrow></mrow><mrow><mn>5</mn></mrow></msub><mrow><mo>(</mo><mrow><mi>μ</mi><mo>-</mo><mi>O</mi><mi>H</mi></mrow><mo>)</mo></mrow></mrow><mo>}</mo></mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>]Cl<sub>4</sub> ⋅ 2H<sub>2</sub>O were studied by <sup>45</sup><span>Sc-NMR, with the effect of the quadrupolar coupling interaction on the spectra of the spin-7/2 nucleus analysed in the hierarchical framework of perturbation theory. Orientation-dependent spectra acquired at </span><em>B</em><sub>0</sub> = 17.6 T showed strong second-order effects due to the comparatively large coupling constant of <em>χ</em> = |14.613 ± 0.006| MHz, with an associated asymmetry parameter of <em>η</em><sub><em>Q</em></sub> = 0.540 9 ± 0.000 4. By analysing the splittings of the ±3/2 satellites, which in good approximation are subjected to first-order effects only, the full quadrupolar coupling tensor could be determined. The second-order effects caused by this tensor were calculated according to theoretical predictions for all orientations, and subtracted from both the centres of gravity of the satellites, and the central transitions. This allowed extraction of the full chemical shift tensor, with the eigenvalues being <em>δ</em><sub>11</sub> = (5.6 ± 0.9) ppm, <em>δ</em><sub>22</sub> = (12.4 ± 0.9) ppm, and <em>δ</em><sub>33</sub> = (38.5 ± 0.9) ppm. In spectra acquired at a lower magnetic field of <em>B</em><sub>0</sub> = 9.4 T, third-order effects could be detected, and similarly quantified using analytical expressions.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the quadrupolar interaction by 45Sc-NMR spectroscopy of single crystals\",\"authors\":\"Otto E.O. Zeman, Thomas Bräuniger\",\"doi\":\"10.1016/j.ssnmr.2022.101775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Single crystals of the compound [</span><span><math><msub><mrow><mrow><mo>{</mo><mrow><mi>S</mi><mi>c</mi><msub><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow><mo>)</mo></mrow></mrow><mrow><mn>5</mn></mrow></msub><mrow><mo>(</mo><mrow><mi>μ</mi><mo>-</mo><mi>O</mi><mi>H</mi></mrow><mo>)</mo></mrow></mrow><mo>}</mo></mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>]Cl<sub>4</sub> ⋅ 2H<sub>2</sub>O were studied by <sup>45</sup><span>Sc-NMR, with the effect of the quadrupolar coupling interaction on the spectra of the spin-7/2 nucleus analysed in the hierarchical framework of perturbation theory. Orientation-dependent spectra acquired at </span><em>B</em><sub>0</sub> = 17.6 T showed strong second-order effects due to the comparatively large coupling constant of <em>χ</em> = |14.613 ± 0.006| MHz, with an associated asymmetry parameter of <em>η</em><sub><em>Q</em></sub> = 0.540 9 ± 0.000 4. By analysing the splittings of the ±3/2 satellites, which in good approximation are subjected to first-order effects only, the full quadrupolar coupling tensor could be determined. The second-order effects caused by this tensor were calculated according to theoretical predictions for all orientations, and subtracted from both the centres of gravity of the satellites, and the central transitions. This allowed extraction of the full chemical shift tensor, with the eigenvalues being <em>δ</em><sub>11</sub> = (5.6 ± 0.9) ppm, <em>δ</em><sub>22</sub> = (12.4 ± 0.9) ppm, and <em>δ</em><sub>33</sub> = (38.5 ± 0.9) ppm. In spectra acquired at a lower magnetic field of <em>B</em><sub>0</sub> = 9.4 T, third-order effects could be detected, and similarly quantified using analytical expressions.</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204022000042\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204022000042","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Quantifying the quadrupolar interaction by 45Sc-NMR spectroscopy of single crystals
Single crystals of the compound []Cl4 ⋅ 2H2O were studied by 45Sc-NMR, with the effect of the quadrupolar coupling interaction on the spectra of the spin-7/2 nucleus analysed in the hierarchical framework of perturbation theory. Orientation-dependent spectra acquired at B0 = 17.6 T showed strong second-order effects due to the comparatively large coupling constant of χ = |14.613 ± 0.006| MHz, with an associated asymmetry parameter of ηQ = 0.540 9 ± 0.000 4. By analysing the splittings of the ±3/2 satellites, which in good approximation are subjected to first-order effects only, the full quadrupolar coupling tensor could be determined. The second-order effects caused by this tensor were calculated according to theoretical predictions for all orientations, and subtracted from both the centres of gravity of the satellites, and the central transitions. This allowed extraction of the full chemical shift tensor, with the eigenvalues being δ11 = (5.6 ± 0.9) ppm, δ22 = (12.4 ± 0.9) ppm, and δ33 = (38.5 ± 0.9) ppm. In spectra acquired at a lower magnetic field of B0 = 9.4 T, third-order effects could be detected, and similarly quantified using analytical expressions.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.