A Stropkovská, A Kisucká, K Bimbová, M Bačová, J Gálik, L Medvecky, I Šulla, M Karasová, N Lukačová
{"title":"联合治疗(rho - a -激酶抑制剂和壳聚糖/胶原多孔支架)为脊髓损伤后的内源性再生过程提供了支持环境。","authors":"A Stropkovská, A Kisucká, K Bimbová, M Bačová, J Gálik, L Medvecky, I Šulla, M Karasová, N Lukačová","doi":"10.12871/000398292021345","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the complexity of pathological processes in spinal cord injury (SCI), it is increasingly recognized that combined strategies are more effective than single treatments. The aim of the present study was to enhance neural tissue regeneration and axon regrowth using Rho-A-kinase inhibitor (Y-27632) in a rat SCI model (Th9 compression) and to bridge the lesion with a chitosan/collagen porous scaffold (ChC-PS) applied two weeks after SCI. In addition, to see the synergic effect of Y-27632 and ChC-PS, we combined these single therapeutic strategies to enhance the regenerative capacity of injured spinal cord tissue. The animals survived eight weeks. Application of Y-27632 modulated the inhibitory milieu by specifically targeting gray and white matter integrity, glial fibrillary acidic protein (GFAP)-immunoreactivity, and the outgrowth of neurofilaments and growth-associated protein-43 (GAP-43) immunoreactive axons across the lesion sites, leading to significant positive functional outcome from day 20 to 56. Compared to single treatments, combined Y-27632/ChC-PS therapy was more effective in neurofilaments and GAP-43 expression and GFAP immunoreactivity in the perilesional area of dorsal, lateral and ventral columns, and in enhancing the gray and white matter integrity throughout the cranio-caudal extent. The findings indicate that combined therapy provides a supportive environment for endogenous regenerative processes.</p>","PeriodicalId":55476,"journal":{"name":"Archives Italiennes De Biologie","volume":"159 3-4","pages":"159-177"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combined therapy (Rho-A-kinase inhibitor and chitosan/collagen porous scaffold) provides a supportive environment for endogenous regenerative processes after spinal cord trauma.\",\"authors\":\"A Stropkovská, A Kisucká, K Bimbová, M Bačová, J Gálik, L Medvecky, I Šulla, M Karasová, N Lukačová\",\"doi\":\"10.12871/000398292021345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the complexity of pathological processes in spinal cord injury (SCI), it is increasingly recognized that combined strategies are more effective than single treatments. The aim of the present study was to enhance neural tissue regeneration and axon regrowth using Rho-A-kinase inhibitor (Y-27632) in a rat SCI model (Th9 compression) and to bridge the lesion with a chitosan/collagen porous scaffold (ChC-PS) applied two weeks after SCI. In addition, to see the synergic effect of Y-27632 and ChC-PS, we combined these single therapeutic strategies to enhance the regenerative capacity of injured spinal cord tissue. The animals survived eight weeks. Application of Y-27632 modulated the inhibitory milieu by specifically targeting gray and white matter integrity, glial fibrillary acidic protein (GFAP)-immunoreactivity, and the outgrowth of neurofilaments and growth-associated protein-43 (GAP-43) immunoreactive axons across the lesion sites, leading to significant positive functional outcome from day 20 to 56. Compared to single treatments, combined Y-27632/ChC-PS therapy was more effective in neurofilaments and GAP-43 expression and GFAP immunoreactivity in the perilesional area of dorsal, lateral and ventral columns, and in enhancing the gray and white matter integrity throughout the cranio-caudal extent. The findings indicate that combined therapy provides a supportive environment for endogenous regenerative processes.</p>\",\"PeriodicalId\":55476,\"journal\":{\"name\":\"Archives Italiennes De Biologie\",\"volume\":\"159 3-4\",\"pages\":\"159-177\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives Italiennes De Biologie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12871/000398292021345\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives Italiennes De Biologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12871/000398292021345","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Combined therapy (Rho-A-kinase inhibitor and chitosan/collagen porous scaffold) provides a supportive environment for endogenous regenerative processes after spinal cord trauma.
Due to the complexity of pathological processes in spinal cord injury (SCI), it is increasingly recognized that combined strategies are more effective than single treatments. The aim of the present study was to enhance neural tissue regeneration and axon regrowth using Rho-A-kinase inhibitor (Y-27632) in a rat SCI model (Th9 compression) and to bridge the lesion with a chitosan/collagen porous scaffold (ChC-PS) applied two weeks after SCI. In addition, to see the synergic effect of Y-27632 and ChC-PS, we combined these single therapeutic strategies to enhance the regenerative capacity of injured spinal cord tissue. The animals survived eight weeks. Application of Y-27632 modulated the inhibitory milieu by specifically targeting gray and white matter integrity, glial fibrillary acidic protein (GFAP)-immunoreactivity, and the outgrowth of neurofilaments and growth-associated protein-43 (GAP-43) immunoreactive axons across the lesion sites, leading to significant positive functional outcome from day 20 to 56. Compared to single treatments, combined Y-27632/ChC-PS therapy was more effective in neurofilaments and GAP-43 expression and GFAP immunoreactivity in the perilesional area of dorsal, lateral and ventral columns, and in enhancing the gray and white matter integrity throughout the cranio-caudal extent. The findings indicate that combined therapy provides a supportive environment for endogenous regenerative processes.
期刊介绍:
Archives Italiennes de Biologie - a Journal of Neuroscience- was founded in 1882 and represents one of the oldest neuroscience journals in the world. Archives publishes original contributions in all the fields of neuroscience, including neurophysiology, experimental neuroanatomy and electron microscopy, neurobiology, neurochemistry, molecular biology, genetics, functional brain imaging and behavioral science.
Archives Italiennes de Biologie also publishes monographic special issues that collect papers on a specific topic of interest in neuroscience as well as the proceedings of important scientific events.
Archives Italiennes de Biologie is published in 4 issues per year and is indexed in the major collections of biomedical journals, including Medline, PubMed, Current Contents, Excerpta Medica.