基于图关注网络的氨基酸环境亲和模型。

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Bioinformatics and Computational Biology Pub Date : 2022-02-01 Epub Date: 2021-11-13 DOI:10.1142/S0219720021500323
Xueheng Tong, Shuqi Liu, Jiawei Gu, Chunguo Wu, Yanchun Liang, Xiaohu Shi
{"title":"基于图关注网络的氨基酸环境亲和模型。","authors":"Xueheng Tong,&nbsp;Shuqi Liu,&nbsp;Jiawei Gu,&nbsp;Chunguo Wu,&nbsp;Yanchun Liang,&nbsp;Xiaohu Shi","doi":"10.1142/S0219720021500323","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins are engines involved in almost all functions of life. They have specific spatial structures formed by twisting and folding of one or more polypeptide chains composed of amino acids. Protein sites are protein structure microenvironments that can be identified by three-dimensional locations and local neighborhoods in which the structure or function exists. Understanding the amino acid environment affinity is essential for additional protein structural or functional studies, such as mutation analysis and functional site detection. In this study, an amino acid environment affinity model based on the graph attention network was developed. Initially, we constructed a protein graph according to the distance between amino acid pairs. Then, we extracted a set of structural features for each node. Finally, the protein graph and the associated node feature set were set to input the graph attention network model and to obtain the amino acid affinities. Numerical results show that our proposed method significantly outperforms a recent 3DCNN-based method by almost 30%.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amino acid environment affinity model based on graph attention network.\",\"authors\":\"Xueheng Tong,&nbsp;Shuqi Liu,&nbsp;Jiawei Gu,&nbsp;Chunguo Wu,&nbsp;Yanchun Liang,&nbsp;Xiaohu Shi\",\"doi\":\"10.1142/S0219720021500323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteins are engines involved in almost all functions of life. They have specific spatial structures formed by twisting and folding of one or more polypeptide chains composed of amino acids. Protein sites are protein structure microenvironments that can be identified by three-dimensional locations and local neighborhoods in which the structure or function exists. Understanding the amino acid environment affinity is essential for additional protein structural or functional studies, such as mutation analysis and functional site detection. In this study, an amino acid environment affinity model based on the graph attention network was developed. Initially, we constructed a protein graph according to the distance between amino acid pairs. Then, we extracted a set of structural features for each node. Finally, the protein graph and the associated node feature set were set to input the graph attention network model and to obtain the amino acid affinities. Numerical results show that our proposed method significantly outperforms a recent 3DCNN-based method by almost 30%.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720021500323\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720021500323","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质是几乎所有生命功能的引擎。它们具有由一条或多条氨基酸组成的多肽链扭曲和折叠而形成的特定空间结构。蛋白质位点是蛋白质结构的微环境,可以通过结构或功能存在的三维位置和局部邻域来识别。了解氨基酸环境亲和性对于其他蛋白质结构或功能研究至关重要,例如突变分析和功能位点检测。本文提出了一种基于图注意网络的氨基酸环境亲和性模型。首先,我们根据氨基酸对之间的距离构造了一个蛋白质图。然后,我们为每个节点提取一组结构特征。最后,设置蛋白质图和关联节点特征集,输入图关注网络模型,获得氨基酸亲和度。数值结果表明,我们提出的方法明显优于最近基于3dcnn的方法近30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amino acid environment affinity model based on graph attention network.

Proteins are engines involved in almost all functions of life. They have specific spatial structures formed by twisting and folding of one or more polypeptide chains composed of amino acids. Protein sites are protein structure microenvironments that can be identified by three-dimensional locations and local neighborhoods in which the structure or function exists. Understanding the amino acid environment affinity is essential for additional protein structural or functional studies, such as mutation analysis and functional site detection. In this study, an amino acid environment affinity model based on the graph attention network was developed. Initially, we constructed a protein graph according to the distance between amino acid pairs. Then, we extracted a set of structural features for each node. Finally, the protein graph and the associated node feature set were set to input the graph attention network model and to obtain the amino acid affinities. Numerical results show that our proposed method significantly outperforms a recent 3DCNN-based method by almost 30%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
期刊最新文献
Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1