IF 1.8 3区 医学Q4 BIOCHEMISTRY & MOLECULAR BIOLOGYMolecular VisionPub Date : 2021-12-07eCollection Date: 2021-01-01
Sofya Gindina, Arturo O Barron, Yan Hu, Antonios Dimopoulos, John Danias
{"title":"组织纤溶酶原激活剂通过非酶作用挽救类固醇诱导的流出设施减少。","authors":"Sofya Gindina, Arturo O Barron, Yan Hu, Antonios Dimopoulos, John Danias","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Tissue plasminogen activator (tPA) prevents steroid-induced reduction in aqueous humor outflow facility; however, its mechanism of action at the trabecular meshwork (TM) remains unclear. Enzymatic and non-enzymatic domains allow tPA to function as both an enzyme and a cytokine. This study sought to determine whether cytokine activity is sufficient to rescue steroid-induced outflow facility reduction.</p><p><strong>Methods: </strong>Outflow facility was measured in C57BL/6J mice following triamcinolone acetonide exposure and either transfection of the TM using adenoviral vectors, encoding for enzymatically active and inactive tPA, or administration of the respective proteins. Protein injections were also administered to tPA deficient (<i>Plat</i>KO) and <i>Mmp-9</i> deficient (<i>Mmp-9</i>KO) mice to determine the potential to rescue reductions in outflow facility and determine downstream mechanisms. Gene expression of matrix metalloproteinases (<i>Mmp-2, -9</i>, and <i>-13</i>) was measured in angle ring tissues containing the TM.</p><p><strong>Results: </strong>Enzymatically active and inactive tPA (either produced after TM transfection or after direct administration) were equally effective in attenuating steroid-induced outflow facility reduction in C57BL/6J mice. They were also equally effective in rescuing outflow reduction in <i>Plat</i>KO mice and causing enhanced expression of matrix metalloproteinases. However, both enzymatically active and enzymatically inactive tPA did not improve outflow reduction in <i>Mmp-9</i>KO mice or increase the baseline outflow facility in naïve C57BL/6J mice.</p><p><strong>Conclusions: </strong>tPA enzymatic activity is not necessary in the regulation of aqueous humor outflow. tPA can increase the expression of matrix metalloproteinases in a cytokine-mediated fashion. This cascade of events may eventually lead to extracellular matrix remodeling at the TM, which reverses outflow facility reduction caused by steroids.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"27 ","pages":"691-705"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/3e/mv-v27-691.PMC8684809.pdf","citationCount":"0","resultStr":"{\"title\":\"Tissue plasminogen activator rescues steroid-induced outflow facility reduction via non-enzymatic action.\",\"authors\":\"Sofya Gindina, Arturo O Barron, Yan Hu, Antonios Dimopoulos, John Danias\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Tissue plasminogen activator (tPA) prevents steroid-induced reduction in aqueous humor outflow facility; however, its mechanism of action at the trabecular meshwork (TM) remains unclear. Enzymatic and non-enzymatic domains allow tPA to function as both an enzyme and a cytokine. This study sought to determine whether cytokine activity is sufficient to rescue steroid-induced outflow facility reduction.</p><p><strong>Methods: </strong>Outflow facility was measured in C57BL/6J mice following triamcinolone acetonide exposure and either transfection of the TM using adenoviral vectors, encoding for enzymatically active and inactive tPA, or administration of the respective proteins. Protein injections were also administered to tPA deficient (<i>Plat</i>KO) and <i>Mmp-9</i> deficient (<i>Mmp-9</i>KO) mice to determine the potential to rescue reductions in outflow facility and determine downstream mechanisms. Gene expression of matrix metalloproteinases (<i>Mmp-2, -9</i>, and <i>-13</i>) was measured in angle ring tissues containing the TM.</p><p><strong>Results: </strong>Enzymatically active and inactive tPA (either produced after TM transfection or after direct administration) were equally effective in attenuating steroid-induced outflow facility reduction in C57BL/6J mice. They were also equally effective in rescuing outflow reduction in <i>Plat</i>KO mice and causing enhanced expression of matrix metalloproteinases. However, both enzymatically active and enzymatically inactive tPA did not improve outflow reduction in <i>Mmp-9</i>KO mice or increase the baseline outflow facility in naïve C57BL/6J mice.</p><p><strong>Conclusions: </strong>tPA enzymatic activity is not necessary in the regulation of aqueous humor outflow. tPA can increase the expression of matrix metalloproteinases in a cytokine-mediated fashion. This cascade of events may eventually lead to extracellular matrix remodeling at the TM, which reverses outflow facility reduction caused by steroids.</p>\",\"PeriodicalId\":18866,\"journal\":{\"name\":\"Molecular Vision\",\"volume\":\"27 \",\"pages\":\"691-705\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/3e/mv-v27-691.PMC8684809.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Purpose: Tissue plasminogen activator (tPA) prevents steroid-induced reduction in aqueous humor outflow facility; however, its mechanism of action at the trabecular meshwork (TM) remains unclear. Enzymatic and non-enzymatic domains allow tPA to function as both an enzyme and a cytokine. This study sought to determine whether cytokine activity is sufficient to rescue steroid-induced outflow facility reduction.
Methods: Outflow facility was measured in C57BL/6J mice following triamcinolone acetonide exposure and either transfection of the TM using adenoviral vectors, encoding for enzymatically active and inactive tPA, or administration of the respective proteins. Protein injections were also administered to tPA deficient (PlatKO) and Mmp-9 deficient (Mmp-9KO) mice to determine the potential to rescue reductions in outflow facility and determine downstream mechanisms. Gene expression of matrix metalloproteinases (Mmp-2, -9, and -13) was measured in angle ring tissues containing the TM.
Results: Enzymatically active and inactive tPA (either produced after TM transfection or after direct administration) were equally effective in attenuating steroid-induced outflow facility reduction in C57BL/6J mice. They were also equally effective in rescuing outflow reduction in PlatKO mice and causing enhanced expression of matrix metalloproteinases. However, both enzymatically active and enzymatically inactive tPA did not improve outflow reduction in Mmp-9KO mice or increase the baseline outflow facility in naïve C57BL/6J mice.
Conclusions: tPA enzymatic activity is not necessary in the regulation of aqueous humor outflow. tPA can increase the expression of matrix metalloproteinases in a cytokine-mediated fashion. This cascade of events may eventually lead to extracellular matrix remodeling at the TM, which reverses outflow facility reduction caused by steroids.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.