{"title":"开放生态位微环境中丝裂原竞争对生精干细胞稳态的调节。","authors":"Yu Kitadate, Shosei Yoshida","doi":"10.1266/ggs.21-00062","DOIUrl":null,"url":null,"abstract":"<p><p>Continuity of spermatogenesis in mammals is underpinned by spermatogenic (also called spermatogonial) stem cells (SSCs) that self-renew and differentiate into sperm that pass on genetic information to the next generation. Despite the fundamental role of SSCs, the mechanisms underlying SSC homeostasis are only partly understood. During homeostasis, the stem cell pool remains constant while differentiating cells are continually produced to replenish the lost differentiated cells. One of the outstanding questions here is how self-renewal and differentiation of SSCs are balanced to achieve a constant self-renewing pool. In this review, we shed light on the regulatory mechanism of SSC homeostasis, with focus on the recently proposed mitogen competition model in a facultative (or open) niche microenvironment.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regulation of spermatogenic stem cell homeostasis by mitogen competition in an open niche microenvironment.\",\"authors\":\"Yu Kitadate, Shosei Yoshida\",\"doi\":\"10.1266/ggs.21-00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuity of spermatogenesis in mammals is underpinned by spermatogenic (also called spermatogonial) stem cells (SSCs) that self-renew and differentiate into sperm that pass on genetic information to the next generation. Despite the fundamental role of SSCs, the mechanisms underlying SSC homeostasis are only partly understood. During homeostasis, the stem cell pool remains constant while differentiating cells are continually produced to replenish the lost differentiated cells. One of the outstanding questions here is how self-renewal and differentiation of SSCs are balanced to achieve a constant self-renewing pool. In this review, we shed light on the regulatory mechanism of SSC homeostasis, with focus on the recently proposed mitogen competition model in a facultative (or open) niche microenvironment.</p>\",\"PeriodicalId\":12690,\"journal\":{\"name\":\"Genes & genetic systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genetic systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1266/ggs.21-00062\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.21-00062","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Regulation of spermatogenic stem cell homeostasis by mitogen competition in an open niche microenvironment.
Continuity of spermatogenesis in mammals is underpinned by spermatogenic (also called spermatogonial) stem cells (SSCs) that self-renew and differentiate into sperm that pass on genetic information to the next generation. Despite the fundamental role of SSCs, the mechanisms underlying SSC homeostasis are only partly understood. During homeostasis, the stem cell pool remains constant while differentiating cells are continually produced to replenish the lost differentiated cells. One of the outstanding questions here is how self-renewal and differentiation of SSCs are balanced to achieve a constant self-renewing pool. In this review, we shed light on the regulatory mechanism of SSC homeostasis, with focus on the recently proposed mitogen competition model in a facultative (or open) niche microenvironment.