基于深度学习和文本挖掘的农产品出口分析。

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Supercomputing Pub Date : 2022-01-01 Epub Date: 2022-02-01 DOI:10.1007/s11227-021-04238-w
Jia-Lang Xu, Ying-Lin Hsu
{"title":"基于深度学习和文本挖掘的农产品出口分析。","authors":"Jia-Lang Xu,&nbsp;Ying-Lin Hsu","doi":"10.1007/s11227-021-04238-w","DOIUrl":null,"url":null,"abstract":"<p><p>Agricultural exports are an important source of economic profit for many countries. Accurate predictions of a country's agricultural exports month on month are key to understanding a country's domestic use and export figures and facilitate advance planning of export, import, and domestic use figures and the resulting necessary adjustments of production and marketing. This study proposes a novel method for predicting the rise and fall of agricultural exports, called agricultural exports time series-long short-term memory (AETS-LSTM). The method applies Jieba word segmentation and Word2Vec to train word vectors and uses TF-IDF and word cloud to learn news-related keywords and finally obtain keyword vectors. This research explores whether the purchasing managers' index (PMI) of each industry can effectively use the AETS-LSTM model to predict the rise and fall of agricultural exports. Research results show that the inclusion of keyword vectors in the PMI values of the finance and insurance industries has a relative impact on the prediction of the rise and fall of agricultural exports, which can improve the prediction accuracy for the rise and fall of agricultural exports by 82.61%. The proposed method achieves improved prediction ability for the chemical/biological/medical, transportation equipment, wholesale, finance and insurance, food and textiles, basic materials, education/professional, science/technical, information/communications/broadcasting, transportation and storage, retail, and electrical and machinery equipment categories, while its performance for the electrical and optical categories shows improved prediction by combining keyword vectors, and its accuracy for the accommodation and food service, and construction and real estate industries remained unchanged. Therefore, the proposed method offers improved prediction capacity for agricultural exports month on month, allowing agribusiness operators and policy makers to evaluate and adjust domestic and foreign production and sales.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"78 8","pages":"10876-10892"},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804672/pdf/","citationCount":"5","resultStr":"{\"title\":\"Analysis of agricultural exports based on deep learning and text mining.\",\"authors\":\"Jia-Lang Xu,&nbsp;Ying-Lin Hsu\",\"doi\":\"10.1007/s11227-021-04238-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Agricultural exports are an important source of economic profit for many countries. Accurate predictions of a country's agricultural exports month on month are key to understanding a country's domestic use and export figures and facilitate advance planning of export, import, and domestic use figures and the resulting necessary adjustments of production and marketing. This study proposes a novel method for predicting the rise and fall of agricultural exports, called agricultural exports time series-long short-term memory (AETS-LSTM). The method applies Jieba word segmentation and Word2Vec to train word vectors and uses TF-IDF and word cloud to learn news-related keywords and finally obtain keyword vectors. This research explores whether the purchasing managers' index (PMI) of each industry can effectively use the AETS-LSTM model to predict the rise and fall of agricultural exports. Research results show that the inclusion of keyword vectors in the PMI values of the finance and insurance industries has a relative impact on the prediction of the rise and fall of agricultural exports, which can improve the prediction accuracy for the rise and fall of agricultural exports by 82.61%. The proposed method achieves improved prediction ability for the chemical/biological/medical, transportation equipment, wholesale, finance and insurance, food and textiles, basic materials, education/professional, science/technical, information/communications/broadcasting, transportation and storage, retail, and electrical and machinery equipment categories, while its performance for the electrical and optical categories shows improved prediction by combining keyword vectors, and its accuracy for the accommodation and food service, and construction and real estate industries remained unchanged. Therefore, the proposed method offers improved prediction capacity for agricultural exports month on month, allowing agribusiness operators and policy makers to evaluate and adjust domestic and foreign production and sales.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"78 8\",\"pages\":\"10876-10892\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804672/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-021-04238-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-021-04238-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 5

摘要

农产品出口是许多国家经济利润的重要来源。准确预测一个国家每月的农产品出口是了解一个国家国内使用和出口数据的关键,有助于提前规划出口、进口和国内使用数据以及由此产生的必要的产销调整。本研究提出了一种预测农产品出口增减的新方法——农产品出口时间序列-长短期记忆(AETS-LSTM)。该方法利用Jieba分词和Word2Vec训练词向量,利用TF-IDF和词云学习新闻相关关键词,最终获得关键词向量。本研究探讨了各个行业的采购经理人指数(PMI)是否能够有效地利用AETS-LSTM模型预测农产品出口的涨跌。研究结果表明,将关键词向量纳入金融保险业PMI值对农产品出口兴衰预测有相对影响,可将农产品出口兴衰预测准确率提高82.61%。该方法对化工/生物/医疗、交通运输设备、批发、金融保险、食品纺织、基础材料、教育/专业、科学/技术、信息/通信/广播、交通运输仓储、零售、电气和机械设备等类别的预测能力有所提高,对电气和光学类别的预测能力通过组合关键词向量有所提高。住宿和餐饮服务、建筑和房地产行业的准确性保持不变。因此,该方法提高了对农产品出口的逐月预测能力,使农业企业经营者和政策制定者能够评估和调整国内外的生产和销售。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of agricultural exports based on deep learning and text mining.

Agricultural exports are an important source of economic profit for many countries. Accurate predictions of a country's agricultural exports month on month are key to understanding a country's domestic use and export figures and facilitate advance planning of export, import, and domestic use figures and the resulting necessary adjustments of production and marketing. This study proposes a novel method for predicting the rise and fall of agricultural exports, called agricultural exports time series-long short-term memory (AETS-LSTM). The method applies Jieba word segmentation and Word2Vec to train word vectors and uses TF-IDF and word cloud to learn news-related keywords and finally obtain keyword vectors. This research explores whether the purchasing managers' index (PMI) of each industry can effectively use the AETS-LSTM model to predict the rise and fall of agricultural exports. Research results show that the inclusion of keyword vectors in the PMI values of the finance and insurance industries has a relative impact on the prediction of the rise and fall of agricultural exports, which can improve the prediction accuracy for the rise and fall of agricultural exports by 82.61%. The proposed method achieves improved prediction ability for the chemical/biological/medical, transportation equipment, wholesale, finance and insurance, food and textiles, basic materials, education/professional, science/technical, information/communications/broadcasting, transportation and storage, retail, and electrical and machinery equipment categories, while its performance for the electrical and optical categories shows improved prediction by combining keyword vectors, and its accuracy for the accommodation and food service, and construction and real estate industries remained unchanged. Therefore, the proposed method offers improved prediction capacity for agricultural exports month on month, allowing agribusiness operators and policy makers to evaluate and adjust domestic and foreign production and sales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
期刊最新文献
Topic sentiment analysis based on deep neural network using document embedding technique. A Fechner multiscale local descriptor for face recognition. Data quality model for assessing public COVID-19 big datasets. BTDA: Two-factor dynamic identity authentication scheme for data trading based on alliance chain. Driving behavior analysis and classification by vehicle OBD data using machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1