在综合社会环境中保护隐私的朋友推荐。

Nitish M Uplavikar, Jaideep Vaidya, Dan Lin, Wei Jiang
{"title":"在综合社会环境中保护隐私的朋友推荐。","authors":"Nitish M Uplavikar,&nbsp;Jaideep Vaidya,&nbsp;Dan Lin,&nbsp;Wei Jiang","doi":"10.1007/978-3-030-65610-2_8","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitous Online Social Networks (OSN)s play a vital role in information creation, propagation and consumption. Given the recent multiplicity of OSNs with specially accumulated knowledge, integration partnerships are formed (without regard to privacy) to provide an enriched, integrated and personalized social experience. However, given the increasing privacy concerns and threats, it is important to develop methods that can provide collaborative capabilities while preserving user privacy. In this work, we focus on friend recommendation systems (FRS) for such partnered OSNs. We identify the various ways through which privacy leaks can occur, and propose a comprehensive solution that integrates both Differential Privacy and Secure Multi-Party Computation to provide a holistic privacy guarantee. We analyze the security of the proposed approach and evaluate the proposed solution with real data in terms of both utility and computational complexity.</p>","PeriodicalId":93446,"journal":{"name":"Information systems security : ... international conference, ICISS ... : proceedings. ICISS (Conference) (1st : 2005 : Kolkata, India)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813036/pdf/nihms-1758651.pdf","citationCount":"3","resultStr":"{\"title\":\"Privacy-Preserving Friend Recommendation in an Integrated Social Environment.\",\"authors\":\"Nitish M Uplavikar,&nbsp;Jaideep Vaidya,&nbsp;Dan Lin,&nbsp;Wei Jiang\",\"doi\":\"10.1007/978-3-030-65610-2_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ubiquitous Online Social Networks (OSN)s play a vital role in information creation, propagation and consumption. Given the recent multiplicity of OSNs with specially accumulated knowledge, integration partnerships are formed (without regard to privacy) to provide an enriched, integrated and personalized social experience. However, given the increasing privacy concerns and threats, it is important to develop methods that can provide collaborative capabilities while preserving user privacy. In this work, we focus on friend recommendation systems (FRS) for such partnered OSNs. We identify the various ways through which privacy leaks can occur, and propose a comprehensive solution that integrates both Differential Privacy and Secure Multi-Party Computation to provide a holistic privacy guarantee. We analyze the security of the proposed approach and evaluate the proposed solution with real data in terms of both utility and computational complexity.</p>\",\"PeriodicalId\":93446,\"journal\":{\"name\":\"Information systems security : ... international conference, ICISS ... : proceedings. ICISS (Conference) (1st : 2005 : Kolkata, India)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813036/pdf/nihms-1758651.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information systems security : ... international conference, ICISS ... : proceedings. ICISS (Conference) (1st : 2005 : Kolkata, India)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-65610-2_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information systems security : ... international conference, ICISS ... : proceedings. ICISS (Conference) (1st : 2005 : Kolkata, India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-65610-2_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无处不在的在线社交网络(OSN)在信息的创造、传播和消费中发挥着至关重要的作用。考虑到近年来osn的多样性和特殊知识的积累,形成了集成伙伴关系(不考虑隐私),以提供丰富、集成和个性化的社交体验。然而,考虑到日益增加的隐私问题和威胁,开发能够在保护用户隐私的同时提供协作功能的方法非常重要。在这项工作中,我们专注于这种合作osn的朋友推荐系统(FRS)。我们确定了可能发生隐私泄露的各种途径,并提出了一个综合的解决方案,将差分隐私和安全多方计算相结合,提供全面的隐私保障。我们分析了所提出方法的安全性,并用实际数据从效用和计算复杂度两方面对所提出的解决方案进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy-Preserving Friend Recommendation in an Integrated Social Environment.

Ubiquitous Online Social Networks (OSN)s play a vital role in information creation, propagation and consumption. Given the recent multiplicity of OSNs with specially accumulated knowledge, integration partnerships are formed (without regard to privacy) to provide an enriched, integrated and personalized social experience. However, given the increasing privacy concerns and threats, it is important to develop methods that can provide collaborative capabilities while preserving user privacy. In this work, we focus on friend recommendation systems (FRS) for such partnered OSNs. We identify the various ways through which privacy leaks can occur, and propose a comprehensive solution that integrates both Differential Privacy and Secure Multi-Party Computation to provide a holistic privacy guarantee. We analyze the security of the proposed approach and evaluate the proposed solution with real data in terms of both utility and computational complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Privacy-Preserving Friend Recommendation in an Integrated Social Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1