Dione J Deaker, Regina Balogh, Symon A Dworjanyn, Benjamin Mos, Maria Byrne
{"title":"海针鼹:幼棘冠海星和成年棘冠海星的防御行为。","authors":"Dione J Deaker, Regina Balogh, Symon A Dworjanyn, Benjamin Mos, Maria Byrne","doi":"10.1086/716777","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractCrown-of-thorns sea stars are one of the most ecologically important tropical marine invertebrates, with boom-bust population dynamics that influence the community structure of coral reefs. Although predation is likely to influence the development of population outbreaks, little is known about the defensive behavior of crown-of-thorns sea stars. Righting behavior after being overturned, a key defensive response in echinoderms, was investigated for the newly settled herbivorous juvenile, the corallivorous juvenile, and adult stages of crown-of-thorns sea stars. The average righting time of the newly settled juveniles (0.3-1.0-mm diameter) was 2.74 minutes. For the coral-eating juveniles (15-55-mm diameter), the righting time (mean = 6.24 min) was faster in larger juveniles, and the mean righting time of the adults was 6.28 minutes. During righting and in response to being lifted off of the substrate, the juveniles and adults exhibited an arm curling response, during which their arms closed over their oral side, often forming a spine ball, a feature not known for other asteroids. The righting and curling responses of the corallivorous juveniles were influenced by the presence of a natural enemy, a coral guard crab, which caused the juveniles to spend more time with their arms curled. These behaviors indicate that crown-of-thorns sea stars use their spines to protect the soft tissue of their oral side. The highly defended morphology and behavioral adaptations of crown-of-thorns sea stars are likely to have evolved as antipredator mechanisms. This points to the potential importance of predators in regulating their populations, which may have decreased in recent times due to fishing, a factor that may contribute to outbreaks.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 3","pages":"259-270"},"PeriodicalIF":2.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Echidnas of the Sea: The Defensive Behavior of Juvenile and Adult Crown-of-Thorns Sea Stars.\",\"authors\":\"Dione J Deaker, Regina Balogh, Symon A Dworjanyn, Benjamin Mos, Maria Byrne\",\"doi\":\"10.1086/716777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractCrown-of-thorns sea stars are one of the most ecologically important tropical marine invertebrates, with boom-bust population dynamics that influence the community structure of coral reefs. Although predation is likely to influence the development of population outbreaks, little is known about the defensive behavior of crown-of-thorns sea stars. Righting behavior after being overturned, a key defensive response in echinoderms, was investigated for the newly settled herbivorous juvenile, the corallivorous juvenile, and adult stages of crown-of-thorns sea stars. The average righting time of the newly settled juveniles (0.3-1.0-mm diameter) was 2.74 minutes. For the coral-eating juveniles (15-55-mm diameter), the righting time (mean = 6.24 min) was faster in larger juveniles, and the mean righting time of the adults was 6.28 minutes. During righting and in response to being lifted off of the substrate, the juveniles and adults exhibited an arm curling response, during which their arms closed over their oral side, often forming a spine ball, a feature not known for other asteroids. The righting and curling responses of the corallivorous juveniles were influenced by the presence of a natural enemy, a coral guard crab, which caused the juveniles to spend more time with their arms curled. These behaviors indicate that crown-of-thorns sea stars use their spines to protect the soft tissue of their oral side. The highly defended morphology and behavioral adaptations of crown-of-thorns sea stars are likely to have evolved as antipredator mechanisms. This points to the potential importance of predators in regulating their populations, which may have decreased in recent times due to fishing, a factor that may contribute to outbreaks.</p>\",\"PeriodicalId\":55376,\"journal\":{\"name\":\"Biological Bulletin\",\"volume\":\"241 3\",\"pages\":\"259-270\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Bulletin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/716777\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/716777","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Echidnas of the Sea: The Defensive Behavior of Juvenile and Adult Crown-of-Thorns Sea Stars.
AbstractCrown-of-thorns sea stars are one of the most ecologically important tropical marine invertebrates, with boom-bust population dynamics that influence the community structure of coral reefs. Although predation is likely to influence the development of population outbreaks, little is known about the defensive behavior of crown-of-thorns sea stars. Righting behavior after being overturned, a key defensive response in echinoderms, was investigated for the newly settled herbivorous juvenile, the corallivorous juvenile, and adult stages of crown-of-thorns sea stars. The average righting time of the newly settled juveniles (0.3-1.0-mm diameter) was 2.74 minutes. For the coral-eating juveniles (15-55-mm diameter), the righting time (mean = 6.24 min) was faster in larger juveniles, and the mean righting time of the adults was 6.28 minutes. During righting and in response to being lifted off of the substrate, the juveniles and adults exhibited an arm curling response, during which their arms closed over their oral side, often forming a spine ball, a feature not known for other asteroids. The righting and curling responses of the corallivorous juveniles were influenced by the presence of a natural enemy, a coral guard crab, which caused the juveniles to spend more time with their arms curled. These behaviors indicate that crown-of-thorns sea stars use their spines to protect the soft tissue of their oral side. The highly defended morphology and behavioral adaptations of crown-of-thorns sea stars are likely to have evolved as antipredator mechanisms. This points to the potential importance of predators in regulating their populations, which may have decreased in recent times due to fishing, a factor that may contribute to outbreaks.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.