Peter W H Holland, Chris D Jiggins, Miriam Liedvogel, Graham Warren, Yannick Wurm
{"title":"白喉麻雀超基因控制行为的功能基因组学。","authors":"Peter W H Holland, Chris D Jiggins, Miriam Liedvogel, Graham Warren, Yannick Wurm","doi":"10.12703/r-01-000003","DOIUrl":null,"url":null,"abstract":"<p><p>Supergenes are regions of suppressed recombination that may span hundreds of genes and can control variation in key ecological phenotypes. Since genetic analysis is made impossible by the absence of recombination between genes, it has been difficult to establish how individual genes within these regions contribute to supergene-controlled phenotypes. The white-throated sparrow is a classic example in which a supergene controls behavioral differences as well as distinct coloration that determines mate choice. A landmark study now demonstrates that differences between supergene variants in the promoter sequences of a hormone receptor gene change its expression and control changes in behavior. To unambiguously establish the link between genotype and phenotype, the authors used antisense oligonucleotides to alter the level of gene expression in a focal brain region targeted through a cannula. The study showcases a powerful approach to the functional genomic manipulation of a wild vertebrate species.</p>","PeriodicalId":73016,"journal":{"name":"Faculty reviews","volume":" ","pages":"75"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803343/pdf/facrev-10-75.pdf","citationCount":"0","resultStr":"{\"title\":\"Functional genomics of supergene-controlled behavior in the white-throated sparrow.\",\"authors\":\"Peter W H Holland, Chris D Jiggins, Miriam Liedvogel, Graham Warren, Yannick Wurm\",\"doi\":\"10.12703/r-01-000003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Supergenes are regions of suppressed recombination that may span hundreds of genes and can control variation in key ecological phenotypes. Since genetic analysis is made impossible by the absence of recombination between genes, it has been difficult to establish how individual genes within these regions contribute to supergene-controlled phenotypes. The white-throated sparrow is a classic example in which a supergene controls behavioral differences as well as distinct coloration that determines mate choice. A landmark study now demonstrates that differences between supergene variants in the promoter sequences of a hormone receptor gene change its expression and control changes in behavior. To unambiguously establish the link between genotype and phenotype, the authors used antisense oligonucleotides to alter the level of gene expression in a focal brain region targeted through a cannula. The study showcases a powerful approach to the functional genomic manipulation of a wild vertebrate species.</p>\",\"PeriodicalId\":73016,\"journal\":{\"name\":\"Faculty reviews\",\"volume\":\" \",\"pages\":\"75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803343/pdf/facrev-10-75.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faculty reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12703/r-01-000003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faculty reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12703/r-01-000003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Functional genomics of supergene-controlled behavior in the white-throated sparrow.
Supergenes are regions of suppressed recombination that may span hundreds of genes and can control variation in key ecological phenotypes. Since genetic analysis is made impossible by the absence of recombination between genes, it has been difficult to establish how individual genes within these regions contribute to supergene-controlled phenotypes. The white-throated sparrow is a classic example in which a supergene controls behavioral differences as well as distinct coloration that determines mate choice. A landmark study now demonstrates that differences between supergene variants in the promoter sequences of a hormone receptor gene change its expression and control changes in behavior. To unambiguously establish the link between genotype and phenotype, the authors used antisense oligonucleotides to alter the level of gene expression in a focal brain region targeted through a cannula. The study showcases a powerful approach to the functional genomic manipulation of a wild vertebrate species.